ترغب بنشر مسار تعليمي؟ اضغط هنا

Ratio of viscosity to entropy density in a strongly coupled one-component plasma

241   0   0.0 ( 0 )
 نشر من قبل Markus H. Thoma
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

String theoretical arguments led to the hypothesis that the ratio of viscosity to entropy of any physical system has a lower bound. Strongly coupled systems usually have a small viscosity compared to weakly coupled plasmas in which the viscosity is proportional to the mean free path. In the case of a one-component plasma the viscosity as a function of the coupling strength shows a minimum. Here we show that the ratio of viscosity to entropy of a strongly coupled one-component plasma is always above the lower bound predicted by string theory.



قيم البحث

اقرأ أيضاً

The influence of viscosity gradient (due to shear flow) on low frequency collective modes in strongly coupled dusty plasma is analyzed. It is shown that for a well known viscoelastic plasma model, the velocity shear dependent viscosity leads to an in stability of the shear mode. The inhomogeneous viscous force and velocity shear coupling supply the free energy for the instability. The combined strength of shear flow and viscosity gradient wins over any stabilizing force and makes the shear mode unstable. Implication of such a novel instability and its applications are briefly outlined.
The fireball concept of Rolf Hagedorn, developed in the 1960s, is an alternative description of hadronic matter. Using a recently derived mass spectrum, we use the transport model GiBUU to calculate the shear viscosity of a gas of such Hagedorn state s, applying the Green-Kubo method to Monte-Carlo calculations. Since the entropy density is rising ad infinitum near $T_H$, this leads to a very low shear viscosity to entropy density ratio near $T_H$. Further, by comparing our results with analytic expressions, we find a nice extrapolation behavior, indicating that a gas of Hagedorn states comes close or even below the boundary $1/4pi$ from AdS-CFT.
Collisional relaxation of Coulomb systems is studied in the strongly coupled regime. We use an optical pump-probe approach to manipulate and monitor the dynamics of ions in an ultracold neutral plasma, which allows direct measurement of relaxation ra tes in a regime where common Landau-Spitzer theory breaks down. Numerical simulations confirm the experimental results and display non-Markovian dynamics at early times.
Linear stability analysis of strongly coupled incompressible dusty plasma in presence of shear flow has been carried out using Generalized Hydrodynamical(GH) model. With the proper Galilean invariant GH model, a nonlocal eigenvalue analysis has been done using different velocity profiles. It is shown that the effect of elasticity enhances the growth rate of shear flow driven Kelvin- Helmholtz (KH) instability. The interplay between viscosity and elasticity not only enhances the growth rate but the spatial domain of the instability is also widened. The growth rate in various parameter space and the corresponding eigen functions are presented.
180 - C. L. Zhou , Y. G. Ma , D. Q. Fang 2012
The ratio of the shear viscosity ($eta$) to entropy density ($s$) for the intermediate energy heavy-ion collisions has been calculated by using the Green-Kubo method in the framework of the quantum molecular dynamics model. The theoretical curve of $ eta/s$ as a function of the incident energy for the head-on Au+Au collisions displays that a minimum region of $eta/s$ has been approached at higher incident energies, where the minimum $eta/s$ value is about 7 times Kovtun-Son- Starinets (KSS) bound (1/4$pi$). We argue that the onset of minimum $eta/s$ region at higher incident energies corresponds to the nuclear liquid gas phase transition in nuclear multifragmentation.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا