ترغب بنشر مسار تعليمي؟ اضغط هنا

We find the series of example theories for which the relativistic limit of maximum tension $F_{max} = c^4/4G$ represented by the entropic force can be abolished. Among them the varying constants theories, some generalized entropy models applied both for cosmological and black hole horizons as well as some generalized uncertainty principle models.
We discuss minisuperspace models within the framework of varying physical constants theories including $Lambda$-term. In particular, we consider the varying speed of light (VSL) theory and varying gravitational constant theory (VG) using the specific ansatze for the variability of constants: $c(a) = c_0 a^n$ and $G(a)=G_0 a^q$. We find that most of the varying $c$ and $G$ minisuperspace potentials are of the tunneling type which allows to use WKB approximation of quantum mechanics. Using this method we show that the probability of tunneling of the universe from nothing ($a=0)$ to a Friedmann geometry with the scale factor $a_t$ is large for growing $c$ models and is strongly suppressed for diminishing $c$ models. As for $G$ varying, the probability of tunneling is large for $G$ diminishing, while it is small for $G$ increasing. In general, both varying $c$ and $G$ change the probability of tunneling in comparison to the standard matter content (cosmological term, dust, radiation) universe models.
This paper is devoted to some simple approach based on general physics tools to describe the physical properties of a hypothetical particle which can be the source of dark energy in the Universe known as phantom. Phantom is characterized by the fact that it possesses negative momentum and kinetic energy and that it gives large negative pressure which acts as antigravity. We consider phantom harmonic oscillator in comparison to a standard harmonic oscillator. By using the first law of thermodynamics we explain why the energy density of the Universe grows when it is filled with phantom. We also show how the collision of phantom with a standard particle leads to exploration of energy from the former by the latter (i.e. from phantom to the standard) if their masses are different. The most striking of our conclusions is that the collision of phantom and standard particles of the same masses is impossible unless both of them are at rest and suddenly start moving with the opposite velocities and kinetic energies. This effect is a classic analogue of a quantum mechanical particle pair creation in a strong electric field or in physical vacuum.
We consider spherically symmetric inhomogeneous pressure Stephani universes, the center of symmetry being our location. The main feature of these models is that comoving observers do not follow geodesics. In particular, comoving perfect fluids have n ecessarily a radially dependent pressure. We consider a subclass of these models characterized by some inhomogeneity parameter $beta$. We show that also the velocity of sound, like the (effective) equation of state parameter, of comoving perfect fluids acquire away from the origin a time and radial dependent change proportional to $beta$. In order to produce a realistic universe accelerating at late times without dark energy component one must take $beta < 0$. The redshift gets a modified dependence on the scale factor $a(t)$ with a relative modification of $-9%$ peaking at $zsim 4$ and vanishing at the big-bang and today on our past lightcone. The equation of state parameter and the speed of sound of dustlike matter (corresponding to a vanishing pressure at the center of symmetry $r=0$) behave in a similar way and away from the center of symmetry they become negative -- a property usually encountered for the dark energy component only. In order to mimic the observed late-time accelerated expansion, the matter component must significantly depart from standard dust, presumably ruling this subclass of Stephani models out as a realistic cosmology. The only way to accept these models is to keep all standard matter components of the universe including dark energy and take an inhomogeneity parameter $beta$ small enough.
Various classes of exotic singularity models have been studied as possible mimic models for the observed recent acceleration of the universe. Here we further study one of these classes and, under the assumption that they are phenomenological toy mode ls for the behavior of an underlying scalar field which also couples to the electromagnetic sector of the theory, obtain the corresponding behavior of the fine-structure constant $alpha$ for particular choices of model parameters that have been previously shown to be in reasonable agreement with cosmological observations. We then compare this predicted behavior with available measurements of $alpha$, thus constraining this putative coupling to electromagnetism. We find that values of the coupling which would provide a good fit to spectroscopic measurements of $alpha$ are in more than three-sigma tension with local atomic clock bounds. Future measurements by ESPRESSO and ELT-HIRES will provide a definitive test of these models.
We derive a luminosity distance formula for the varying speed of light (VSL) theory which involves higher order characteristics of expansion such as jerk, snap and lerk which can test the impact of varying $c$ onto the evolution of the universe. We s how that the effect of varying $c$ is possible to be isolated due to the relations connecting observational parameters already by measuring the second-order term in redshift $z$ unless there is a redundancy between the curvature and an exotic fluid of cosmic strings scaling the same way as the curvature.
We review the variety of new singularities in homogeneous and isotropic FRW cosmology which differ from standard Big-Bang and Big-Crunch singularities and suggest how the nature of these singularities can be influenced by the varying fundamental constants.
We derive a redshift drift formula for the spherically symmetric inhomogeneous pressure Stephani universes which are complementary to the spherically symmetric inhomogeneous density Lema^itre-Tolman-Bondi models. We show that there is a clear differe nce between redshift drift predictions for these two models as well as between the Stephani models and the standard $Lambda$CDM Friedmann models. The Stephani models have positive drift values at small redshift and behave qualitatively (but not quantitatively) as the $Lambda$CDM models at large redshift, while the drift for LTB models is always negative. This prediction may perhaps be tested in future telescopes such as European Extremely Large Telescope (EELT), Thirty Meter Telescope (TMT), Giant Magellan Telescope (GMT), and especially, in gravitational wave interferometers DECi-Hertz Interferometer Gravitational Wave Observatory and Big Bang Observer (DECIGO/BBO), which aim at low redshift.
We discuss the constraints coming from current observations of type Ia supernovae on cosmological models which allow sudden future singularities of pressure (with the scale factor and the energy density regular). We show that such a sudden singularit y may happen in the very near future (e.g. within ten million years) and its prediction at the present moment of cosmic evolution cannot be distinguished, with current observational data, from the prediction given by the standard quintessence scenario of future evolution. Fortunately, sudden future singularities are characterized by a momentary peak of infinite tidal forces only; there is no geodesic incompletness which means that the evolution of the universe may eventually be continued throughout until another ``more serious singularity such as Big-Crunch or Big-Rip.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا