ﻻ يوجد ملخص باللغة العربية
This paper is devoted to some simple approach based on general physics tools to describe the physical properties of a hypothetical particle which can be the source of dark energy in the Universe known as phantom. Phantom is characterized by the fact that it possesses negative momentum and kinetic energy and that it gives large negative pressure which acts as antigravity. We consider phantom harmonic oscillator in comparison to a standard harmonic oscillator. By using the first law of thermodynamics we explain why the energy density of the Universe grows when it is filled with phantom. We also show how the collision of phantom with a standard particle leads to exploration of energy from the former by the latter (i.e. from phantom to the standard) if their masses are different. The most striking of our conclusions is that the collision of phantom and standard particles of the same masses is impossible unless both of them are at rest and suddenly start moving with the opposite velocities and kinetic energies. This effect is a classic analogue of a quantum mechanical particle pair creation in a strong electric field or in physical vacuum.
We analyse the emergent cosmological dynamics corresponding to the mean field hydrodynamics of quantum gravity condensates, in the tensorial group field theory formalism. We focus in particular on the cosmological effects of fundamental interactions,
I discuss the dark energy characterized by the violation of the null energy condition ($varrho + p geq 0$), dubbed phantom. Amazingly, it is admitted by the current astronomical data from supernovae. We discuss both classical and quantum cosmological
In this paper, we have presented a model of the FLRW universe filled with matter and dark energy fluids, by assuming an ansatz that deceleration parameter is a linear function of the Hubble constant. This results in a time-dependent DP having deceler
We discuss the exact solutions of brane universes and the results indicate the Friedmann equations on the branes are modified with a new density term. Then, we assume the new term as the density of dark energy. Using Wetterichs parametrization equati
In this study we consider an exponential decaying form for dark energy as EoS parameter in order to discuss the dynamics of the universe. Firstly, assuming that universe is filled with an ideal fluid which consists of exponential decaying dark energy