ﻻ يوجد ملخص باللغة العربية
We consider spherically symmetric inhomogeneous pressure Stephani universes, the center of symmetry being our location. The main feature of these models is that comoving observers do not follow geodesics. In particular, comoving perfect fluids have necessarily a radially dependent pressure. We consider a subclass of these models characterized by some inhomogeneity parameter $beta$. We show that also the velocity of sound, like the (effective) equation of state parameter, of comoving perfect fluids acquire away from the origin a time and radial dependent change proportional to $beta$. In order to produce a realistic universe accelerating at late times without dark energy component one must take $beta < 0$. The redshift gets a modified dependence on the scale factor $a(t)$ with a relative modification of $-9%$ peaking at $zsim 4$ and vanishing at the big-bang and today on our past lightcone. The equation of state parameter and the speed of sound of dustlike matter (corresponding to a vanishing pressure at the center of symmetry $r=0$) behave in a similar way and away from the center of symmetry they become negative -- a property usually encountered for the dark energy component only. In order to mimic the observed late-time accelerated expansion, the matter component must significantly depart from standard dust, presumably ruling this subclass of Stephani models out as a realistic cosmology. The only way to accept these models is to keep all standard matter components of the universe including dark energy and take an inhomogeneity parameter $beta$ small enough.
Why is the Universe so homogeneous and isotropic? We summarize a general study of a $gamma$-law perfect fluid alongside an inhomogeneous, massless scalar gauge field (with homogeneous gradient) in anisotropic spaces with General Relativity. The aniso
We consider the robustness of small-field inflation in the presence of scalar field inhomogeneities. Previous numerical work has shown that if the scalar potential is flat only over a narrow interval, such as in commonly considered inflection-point m
Deriving the Einstein field equations (EFE) with matter fluid from the action principle is not straightforward, because mass conservation must be added as an additional constraint to make rest-frame mass density variable in reaction to metric variati
We introduce a generalization of the 4-dimensional averaging window function of Gasperini, Marozzi and Veneziano (2010) that may prove useful for a number of applications. The covariant nature of spatial scalar averaging schemes to address the averag
We consider spherically symmetric distributions of anisotropic fluids with a central vacuum cavity, evolving under the condition of vanishing expansion scalar. Some analytical solutions are found satisfying Darmois junction conditions on both delimit