ترغب بنشر مسار تعليمي؟ اضغط هنا

On finite structures, there is a well-known connection between the expressive power of Datalog, finite variable logics, the existential pebble game, and bounded hypertree duality. We study this connection for infinite structures. This has application s for constraint satisfaction with infinite templates. If the template Gamma is omega-categorical, we present various equivalent characterizations of those Gamma such that the constraint satisfaction problem (CSP) for Gamma can be solved by a Datalog program. We also show that CSP(Gamma) can be solved in polynomial time for arbitrary omega-categorical structures Gamma if the input is restricted to instances of bounded treewidth. Finally, we characterize those omega-categorical templates whose CSP has Datalog width 1, and those whose CSP has strict Datalog width k.
We introduce a general method to count unlabeled combinatorial structures and to efficiently generate them at random. The approach is based on pointing unlabeled structures in an unbiased way that a structure of size n gives rise to n pointed structu res. We extend Polya theory to the corresponding pointing operator, and present a random sampling framework based on both the principles of Boltzmann sampling and on Polya operators. All previously known unlabeled construction principles for Boltzmann samplers are special cases of our new results. Our method is illustrated on several examples: in each case, we provide enumerative results and efficient random samplers. The approach applies to unlabeled families of plane and nonplane unrooted trees, and tree-like structures in general, but also to families of graphs (such as cacti graphs and outerplanar graphs) and families of planar maps.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا