ﻻ يوجد ملخص باللغة العربية
On finite structures, there is a well-known connection between the expressive power of Datalog, finite variable logics, the existential pebble game, and bounded hypertree duality. We study this connection for infinite structures. This has applications for constraint satisfaction with infinite templates. If the template Gamma is omega-categorical, we present various equivalent characterizations of those Gamma such that the constraint satisfaction problem (CSP) for Gamma can be solved by a Datalog program. We also show that CSP(Gamma) can be solved in polynomial time for arbitrary omega-categorical structures Gamma if the input is restricted to instances of bounded treewidth. Finally, we characterize those omega-categorical templates whose CSP has Datalog width 1, and those whose CSP has strict Datalog width k.
We characterise the sentences in Monadic Second-order Logic (MSO) that are over finite structures equivalent to a Datalog program, in terms of an existential pebble game. We also show that for every class C of finite structures that can be expressed
We investigate the impact of modifying the constraining relations of a Constraint Satisfaction Problem (CSP) instance, with a fixed template, on the set of solutions of the instance. More precisely we investigate sensitive instances: an instance of t
We consider the problem of approximately solving constraint satisfaction problems with arity $k > 2$ ($k$-CSPs) on instances satisfying certain expansion properties, when viewed as hypergraphs. Random instances of $k$-CSPs, which are also highly expa
Finite-domain constraint satisfaction problems are either solvable by Datalog, or not even expressible in fixed-point logic with counting. The border between the two regimes coincides with an important dichotomy in universal algebra; in particular, t
The universal-algebraic approach has proved a powerful tool in the study of the complexity of CSPs. This approach has previously been applied to the study of CSPs with finite or (infinite) omega-categorical templates, and relies on two facts. The fir