ترغب بنشر مسار تعليمي؟ اضغط هنا

Interstellar dust in galaxies can be traced either through its extinction effects on the star light, or through its thermal emission at infrared wavelengths. Recent radiative transfer studies of several nearby edge-on galaxies have found an apparent inconsistency in the dust energy balance: the radiative transfer models that successfully explain the optical extinction underestimate the observed fluxes by an average factor of three. We investigate the dust energy balance for IC4225 and NGC5166, two edge-on spiral galaxies observed by the Herschel Space Observatory in the frame of the H-ATLAS survey. We start from models which were constrained from optical data and extend them to construct the entire spectral energy distribution of our galaxies. These predicted values are subsequently compared to the observed far-infrared fluxes. We find that including a young stellar population in the modelling is necessary as it plays a non-negligible part in the heating of the dust grains. While the modelling approach for both galaxies is nearly identical, we find two very different results. As is often seen in other edge-on spiral galaxies, the far-infrared emission of our radiative transfer model of IC4225 underestimates the observed fluxes by a factor of about three. For NGC5166 on the other hand, we find that both the predicted spectral energy distribution as well as the simulated images match the observations particularly well. We explore possible reasons for this difference and conclude that it is unlikely that one single mechanism is the cause of the dust energy balance problem in spiral galaxies. We discuss the different approaches that can be considered in order to get a conclusive answer on the origin this discrepancy.
The interstellar dust content in galaxies can be traced in extinction at optical wavelengths, or in emission in the far-infrared. Several studies have found that radiative transfer models that successfully explain the optical extinction in edge-on sp iral galaxies generally underestimate the observed FIR/submm fluxes by a factor of about three. In order to investigate this so-called dust energy balance problem, we use two Milky Way-like galaxies produced by high-resolution hydrodynamical simulations. We create mock optical edge-on views of these simulated galaxies (using the radiative transfer code SKIRT), and we then fit the parameters of a basic spiral galaxy model to these images (using the fitting code FitSKIRT). The basic model includes smooth axisymmetric distributions along a Sersic bulge and exponential disc for the stars, and a second exponential disc for the dust. We find that the dust mass recovered by the fitted models is about three times smaller than the known dust mass of the hydrodynamical input models. This factor is in agreement with previous energy balance studies of real edge-on spiral galaxies. On the other hand, fitting the same basic model to less complex input models (e.g. a smooth exponential disc with a spiral perturbation or with random clumps), does recover the dust mass of the input model almost perfectly. Thus it seems that the complex asymmetries and the inhomogeneous structure of real and hydrodynamically simulated galaxies are a lot more efficient at hiding dust than the rather contrived geometries in typical quasi-analytical models. This effect may help explain the discrepancy between the dust emission predicted by radiative transfer models and the observed emission in energy balance studies for edge-on spiral galaxies.
126 - M. Baes , D. Herranz , S. Bianchi 2014
We cross-correlate the Planck Catalogue of Compact Sources (PCCS) with the fully sampled 84 deg2 Herschel Virgo Cluster Survey (HeViCS) fields. We search for and identify the 857 and 545 GHz PCCS sources in the HeViCS fields by studying their FIR/sub mm and optical counterparts. We find 84 and 48 compact Planck sources in the HeViCS fields at 857 and 545 GHz, respectively. Almost all sources correspond to individual bright Virgo Cluster galaxies. The vast majority of the Planck detected galaxies are late-type spirals, with the Sc class dominating the numbers, while early-type galaxies are virtually absent from the sample, especially at 545 GHz. We compare the HeViCS SPIRE flux densities for the detected galaxies with the four different PCCS flux density estimators and find an excellent correlation with the aperture photometry flux densities, even at the highest flux density levels. We find only seven PCCS sources in the HeViCS fields without a nearby galaxy as obvious counterpart, and conclude that all of these are dominated by Galactic cirrus features or are spurious detections. No Planck sources in the HeViCS fields seem to be associated to high-redshift proto-clusters of dusty galaxies or strongly lensed submm sources. Finally, our study is the first empirical confirmation of the simulation-based estimated completeness of the PCCS, and provides a strong support of the internal PCCS validation procedure.
We use dust scaling relations to investigate the hypothesis that Virgo cluster transition-type dwarfs are infalling star-forming field galaxies, which is argued based on their optical features (e.g. disks, spiral arms, bars) and kinematic properties similar to late-type galaxies. After their infall, environmental effects gradually transform them into early-type galaxies through the removal of their interstellar medium and quenching of all star formation activity. In this paper, we aim to verify whether this hypothesis holds using far-infrared diagnostics based on Herschel observations of the Virgo cluster taken as part of the Herschel Virgo Cluster Survey (HeViCS). We select transition-type objects in the nearest cluster, Virgo, based on spectral diagnostics indicative for their residual or ongoing star formation. We detect dust Md ~ 10^{5-6} Msun in 36% of the transition-type dwarfs located on the high end of the stellar mass distribution. This suggests that the dust reservoirs present in non-detections fall just below the Herschel detection limit (< 1.1x10^5 Msun). Dust scaling relations support the hypothesis of a transformation between infalling late-type galaxies to quiescent low-mass spheroids governed by environmental effects, with dust-to-stellar mass fractions for transition-type dwarfs in between values characteristic for late-type objects and the lower dust fractions observed in early-type galaxies. Several transition-type dwarfs demonstrate blue central cores, hinting at the radially outside-in removal of gas and quenching of star formation activity. The fact that dust is also confined to the inner regions suggests that metals are stripped in the outer regions along with the gas. In the scenario of most dust being stripped from the galaxy along with the gas, we argue that... (abridged)
130 - W. Saftly , P. Camps , M. Baes 2013
A crucial aspect of 3D Monte Carlo radiative transfer is the choice of the spatial grid used to partition the dusty medium. We critically investigate the use of octree grids in Monte Carlo dust radiative transfer, with two different octree constructi on algorithms (regular and barycentric subdivision) and three different octree traversal algorithms (top-down, neighbour list, and the bookkeeping method). In general, regular octree grids need higher levels of subdivision compared to the barycentric grids for a fixed maximum cell mass threshold criterion. The total number of grid cells, however, depends on the geometry of the model. Surprisingly, regular octree grid simulations turn out to be 10 to 20% more efficient in run time than the barycentric grid simulations, even for those cases where the latter contain fewer grid cells than the former. Furthermore, we find that storing neighbour lists for each cell in an octree, ordered according to decreasing overlap area, is worth the additional memory and implementation overhead: using neighbour lists can cut down the grid traversal by 20% compared to the traditional top-down method. In conclusion, the combination of a regular node subdivision and the neighbour list method results in the most efficient octree structure for Monte Carlo radiative transfer simulations.
Galactic cirrus emission at far-infrared wavelengths affects many extragalactic observations. Separating this emission from that associated with extragalactic objects is both important and difficult. In this paper we discuss a particular case, the M8 1 group, and the identification of diffuse structures prominent in the infrared, but also detected at optical wavelengths. The origin of these structures has previously been controversial, ranging from them being the result of a past interaction between M81 and M82 or due to more local Galactic emission. We show that over of order a few arcminute scales the far-infrared (Herschel 250 &mu&m) emission correlates spatially very well with a particular narrow velocity (2-3 km/s) component of the Galactic HI. We find no evidence that any of the far-infrared emission associated with these features actually originates in the M81 group. Thus we infer that the associated diffuse optical emission must be due to galactic light back scattered off dust in our galaxy. Ultra-violet observations pick out young stellar associations around M81, but no detectable far-infrared emission. We consider in detail one of the Galactic cirrus features, finding that the far-infrared HI relation breaks down below arc minute scales and that at smaller scales there can be quite large dust temperature variations.
Passive early-type galaxies (ETGs) provide an ideal laboratory for studying the interplay between dust formation around evolved stars and its subsequent destruction in a hot gas. Using Spitzer-IRS and Herschel data we compare the dust production rate in the envelopes of evolved AGB stars with a constraint on the total dust mass. Early-type galaxies which appear to be truly passively evolving are not detected by Herschel. We thus derive a distance independent upper limit to the dust grain survival time in the hostile environment of ETGs of < 46 +/- 25 Myr for amorphous silicate grains. This implies that ETGs which are detected at far-infrared wavelengths have acquired a cool dusty medium via interaction. Given likely time-scales for ram-pressure stripping, this also implies that only galaxies with dust in a cool (atomic) medium can release dust into the intra-cluster medium.
By combining Herschel-SPIRE observations obtained as part of the Herschel Virgo Cluster Survey with 21 cm HI data from the literature, we investigate the role of the cluster environment on the dust content of Virgo spiral galaxies.We show for the fir st time that the extent of the dust disk is significantly reduced in HI-deficient galaxies, following remarkably well the observed truncation of the HI disk. The ratio of the submillimetre-to- optical diameter correlates with the HI-deficiency, suggesting that the cluster environment is able to strip dust as well as gas. These results provide important insights not only into the evolution of cluster galaxies but also into the metal enrichment of the intra-cluster medium.
147 - M. Baes , J. Fritz , D. A. Gadotti 2010
We use Herschel PACS and SPIRE observations of the edge-on spiral galaxy UGC 4754, taken as part of the H-ATLAS SDP observations, to investigate the dust energy balance in this galaxy. We build detailed SKIRT radiative models based on SDSS and UKIDSS maps and use these models to predict the far-infrared emission. We find that our radiative transfer model underestimates the observed FIR emission by a factor of two to three. Similar discrepancies have been found for other edge-on spiral galaxies based on IRAS, ISO, and SCUBA data. Thanks to the good sampling of the SED at FIR wavelengths, we can rule out an underestimation of the FIR emissivity as the cause for this discrepancy. Instead we support highly obscured star formation that contributes little to the optical extinction as a more probable explanation.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا