ترغب بنشر مسار تعليمي؟ اضغط هنا

InGaAs Quantum Dots embedded in GaAs barriers, grown in inverted tetrahedral recesses of 7 {mu}m edge, have showed interesting characteristics in terms of uniformity and spectral narrowness of the emission. In this paper we present a study on the fin e structure splitting (FSS). The investigation of about 40 single quantum dots revealed two main points: (1) the values of this parameter are very similar from dot to dot, proving again the uniformity of Pyramidal QD properties, (2) there is a little chance, in the sample investigated, to find a dot with natural zero splitting, but the values found (the mean being 13 {mu}eV) should always guarantee the capability of restoring the degeneracy with some corrective technique (e.g. application of a small magnetic field).
We report on the optical properties of a newly developed site-controlled InGaAs Dots in GaAs barriers grown in pre-patterned pyramidal recesses by metalorganic vapour phase epitaxy. The inhomogeneous broadening of excitonic emission from an ensemble of quantum dots is found to be extremely narrow, with a standard deviation of 1.19 meV. A dramatic improvement in the spectral purity of emission lines from individual dots is also reported (18-30 ueV) when compared to the state-of-the-art for site controlled quantum dots.
In this paper we report on the optical properties of site controlled InGaAs dots with GaAs barriers grown in pyramidal recesses by metalorganic vapour phase epitaxy. The inhomogeneous broadening of excitonic emission from an ensemble of quantum dots is found to be unusually narrow, with a standard deviation of 1.19 meV, and spectral purity of emission lines from individual dots is found to be very high (18-30 ueV), in contrast with other site-controlled systems.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا