ترغب بنشر مسار تعليمي؟ اضغط هنا

If driven sufficiently strongly, superconducting microresonators exhibit nonlinear behavior including response bifurcation. This behavior can arise from a variety of physical mechanisms including heating effects, grain boundaries or weak links, vorte x penetration, or through the intrinsic nonlinearity of the kinetic inductance. Although microresonators used for photon detection are usually driven fairly hard in order to optimize their sensitivity, most experiments to date have not explored detector performance beyond the onset of bifurcation. Here we present measurements of a lumped-element superconducting microresonator designed for use as a far-infrared detector and operated deep into the nonlinear regime. The 1 GHz resonator was fabricated from a 22 nm thick titanium nitride film with a critical temperature of 2 K and a normal-state resistivity of $100, mu Omega,$cm. We measured the response of the device when illuminated with 6.4 pW optical loading using microwave readout powers that ranged from the low-power, linear regime to 18 dB beyond the onset of bifurcation. Over this entire range, the nonlinear behavior is well described by a nonlinear kinetic inductance. The best noise-equivalent power of $2 times 10^{-16}$ W/Hz$^{1/2}$ at 10 Hz was measured at the highest readout power, and represents a $sim$10 fold improvement compared with operating below the onset of bifurcation.
Submillimeter cameras now have up to $10^4$ pixels (SCUBA 2). The proposed CCAT 25-meter submillimeter telescope will feature a 1 degree field-of-view. Populating the focal plane at 350 microns would require more than $10^6$ photon-noise limited pixe ls. To ultimately achieve this scaling, simple detectors and high-density multiplexing are essential. We are addressing this long-term challenge through the development of frequency-multiplexed superconducting microresonator detector arrays. These arrays use lumped-element, direct-absorption resonators patterned from titanium nitride films. We will discuss our progress toward constructing a scalable 350 micron pathfinder instrument focusing on fabrication simplicity, multiplexing density, and ultimately a low per-pixel cost.
Current generation millimeter wavelength detectors suffer from scaling limits imposed by complex cryogenic readout electronics. To circumvent this it is imperative to investigate technologies that intrinsically incorporate strong multiplexing. One po ssible solution is the kinetic inductance detector (KID). In order to assess the potential of this nascent technology, a prototype instrument optimized for the 2 mm atmospheric window was constructed. Known as the Neel IRAM KIDs Array (NIKA), it was recently tested at the Institute for Millimetric Radio Astronomy (IRAM) 30-meter telescope at Pico Veleta, Spain. The measurement resulted in the imaging of a number of sources, including planets, quasars, and galaxies. The images for Mars, radio star MWC349, quasar 3C345, and galaxy M87 are presented. From these results, the optical NEP was calculated to be around $1 times 10^{-15}$ W$ / $Hz$^{1/2}$. A factor of 10 improvement is expected to be readily feasible by improvements in the detector materials and reduction of performance-degrading spurious radiation.
By measuring the electrical transport properties of superconducting NbN quarter-wave resonators in direct contact with a helium bath, we have demonstrated a high-speed and spatially sensitive sensor for the permittivity of helium. In our implementati on a $sim10^{-3}$ mm$^3$ sensing volume is measured with a bandwidth of 300 kHz in the temperature range 1.8 to 8.8 K. The minimum detectable change of the permittivity of helium is calculated to be $sim6times$$10^{-11}$ $epsilon_0$/Hz$^{1/2}$ with a sensitivity of order $10^{-13}$ $epsilon_0$/Hz$^{1/2}$ easily achievable. Potential applications include operation as a fast, localized helium thermometer and as a transducer in superfluid hydrodynamic experiments.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا