ترغب بنشر مسار تعليمي؟ اضغط هنا

In-situ measurement of the permittivity of helium using microwave NbN resonators

45   0   0.0 ( 0 )
 نشر من قبل Loren Swenson
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

By measuring the electrical transport properties of superconducting NbN quarter-wave resonators in direct contact with a helium bath, we have demonstrated a high-speed and spatially sensitive sensor for the permittivity of helium. In our implementation a $sim10^{-3}$ mm$^3$ sensing volume is measured with a bandwidth of 300 kHz in the temperature range 1.8 to 8.8 K. The minimum detectable change of the permittivity of helium is calculated to be $sim6times$$10^{-11}$ $epsilon_0$/Hz$^{1/2}$ with a sensitivity of order $10^{-13}$ $epsilon_0$/Hz$^{1/2}$ easily achievable. Potential applications include operation as a fast, localized helium thermometer and as a transducer in superfluid hydrodynamic experiments.

قيم البحث

اقرأ أيضاً

A numerical investigation of two-laser photoassociation (PA) spectroscopy on spin-polarized metastable helium (He*) atoms is presented within the context of experimental observation of the least-bound energy level in the scattering potential and subs equent determination of the s-wave scattering length. Starting out from the model developed by Bohn and Julienne [Phys. Rev. A textbf{60}, (1999) 414], PA rate coefficients are obtained as a function of the parameters of the two lasers. The rate coefficients are used to simulate one- and two-laser PA spectra. The results demonstrate the feasibility of a spectroscopic determination of the binding energy of the least-bound level. The simulated spectra may be used as a guideline when designing such an experiment, whereas the model may also be employed for fitting experimentally obtained PA spectra. In addition, the prospects for substantial modification of the He* scattering length by means of optical Feshbach resonances are considered. Several experimental issues relating to the numerical investigation presented here are discussed.
We demonstrate an analytical method for calculating the phase sensitivity of a class of oscillators whose phase does not affect the time evolution of the other dynamic variables. We show that such oscillators possess the possibility for complete phas e noise elimination. We apply the method to a feedback oscillator which employs a high Q weakly nonlinear resonator and provide explicit parameter values for which the feedback phase noise is completely eliminated and others for which there is no amplitude-phase noise conversion. We then establish an operational mode of the oscillator which optimizes its performance by diminishing the feedback noise in both quadratures, thermal noise, and quality factor fluctuations. We also study the spectrum of the oscillator and provide specific results for the case of 1/f noise sources.
Microwave reflectance probed photoconductivity (or $mu$-PCD) measurement represents a contactless and non-invasive method to characterize impurity content in semiconductors. Major drawbacks of the method include a difficult separation of reflectance due to dielectric and conduction effects and that the $mu$-PCD signal is prohibitively weak for highly conducting samples. Both of these limitations could be tackled with the use of microwave resonators due to the well-known sensitivity of resonator parameters to minute changes in the material properties combined with a null measurement. A general misconception is that time resolution of resonator measurements is limited beyond their bandwidth by the readout electronics response time. While it is true for conventional resonator measurements, such as those employing a frequency sweep, we present a time-resolved resonator parameter readout method which overcomes these limitations and allows measurement of complex material parameters and to enhance $mu$-PCD signals with the ultimate time resolution limit being the resonator time constant. This is achieved by detecting the transient response of microwave resonators on the timescale of a few 100 ns emph{during} the $mu$-PCD decay signal. The method employs a high-stability oscillator working with a fixed frequency which results in a stable and highly accurate measurement.
The performance of superconducting circuits for quantum computing is limited by materials losses. In particular, coherence times are typically bounded by two-level system (TLS) losses at single photon powers and millikelvin temperatures. The identifi cation of low loss fabrication techniques, materials, and thin film dielectrics is critical to achieving scalable architectures for superconducting quantum computing. Superconducting microwave resonators provide a convenient qubit proxy for assessing performance and studying TLS loss and other mechanisms relevant to superconducting circuits such as non-equilibrium quasiparticles and magnetic flux vortices. In this review article, we provide an overview of considerations for designing accurate resonator experiments to characterize loss, including applicable types of loss, cryogenic setup, device design, and methods for extracting material and interface losses, summarizing techniques that have been evolving for over two decades. Results from measurements of a wide variety of materials and processes are also summarized. Lastly, we present recommendations for the reporting of loss data from superconducting microwave resonators to facilitate materials comparisons across the field.
We consider the application of a small in-plane magnetic field to electrons on a helium surface in a perpendicular magnetic field. Certain states that were bound to the helium surface then dissolve into the continuum turning into long-lived resonance s. As a result microwave absorption lines acquire an asymmetric Fano lineshape that is tunable by varying the microwave polarisation or the in-plane magnetic field. Electrons trapped in a formerly bound state will tunnel off the surface of helium; we show that under suitable circumstances this ``radioactive decay can show damped oscillations rather than a simple exponential decay. The mechanism for oscillatory exponential decay is not specific to electrons on Helium and this effect may also be relevant elsewhere in physics.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا