ترغب بنشر مسار تعليمي؟ اضغط هنا

We discuss the phases of QCD in the parameter space spanned by the number of light flavours and the temperature with respect to the realisation of chiral and conformal symmetries. The intriguing interplay of these symmetries is best studied by means of lattice simulations, and some selected results from our recent work are presented here.
We study the interaction energy between two surfaces, one of them flat, the other describable as the composition of a small-amplitude corrugation and a slightly curved, smooth surface. The corrugation, represented by a spatially random variable, invo lves Fourier wavelengths shorter than the (local) curvature radii of the smooth component of the surface. After averaging the interaction energy over the corrugation distribution, we obtain an expression which only depends on the smooth component. We then approximate that functional by means of a derivative expansion, calculating explicitly the leading and next-to-leading order terms in that approximation scheme. We analyze the resulting interplay between shape and roughness corrections for some specific corrugation models in the cases of electrostatic and Casimir interactions.
This note is based on our recent results on QCD with varying number of flavors of fundamental fermions. Topics include unusual, strong dynamics in the preconformal, confining phase, the physics of the conformal window and the role of ab-initio lattic e simulations in establishing our current knowledge of the phases of many flavor QCD
138 - C. D. Fosco , F. C. Lombardo , 2012
We apply a perturbative approach to evaluate the Casimir energy for a massless real scalar field in 3+1 dimensions, subject to Dirichlet boundary conditions on two surfaces. One of the surfaces is assumed to be flat, while the other corresponds to a small deformation, described by a single function $eta$, of a flat mirror. The perturbative expansion is carried out up to the fourth order in the deformation $eta$, and the results are applied to the calculation of the Casimir energy for corrugated mirrors in front of a plane. We also reconsider the proximity force approximation within the context of this expansion.
We derive exact expressions for the Casimir scalar interaction energy between media-separated eccentric dielectric cylinders and for the media-separated cylinder-plane geometry using a mode-summation approach. Similarly to the electromagnetic Casimir -Lifshitz interaction energy between fluid-separated planar plates, the force between cylinders is attractive or repulsive depending on the relative values of the permittivities of the three intervening media.
A round table held during the Hadron07 Conference focusing on experimental observations of new hadronic states, on theoretical perspectives for their description, and on the role of hadronic spectroscopy in furthering our knowledge of the fundamental theory of strong interactions.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا