ترغب بنشر مسار تعليمي؟ اضغط هنا

Methods and Models for Hadron Physics

70   0   0.0 ( 0 )
 نشر من قبل Maria-Paola Lombardo
 تاريخ النشر 2008
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

A round table held during the Hadron07 Conference focusing on experimental observations of new hadronic states, on theoretical perspectives for their description, and on the role of hadronic spectroscopy in furthering our knowledge of the fundamental theory of strong interactions.

قيم البحث

اقرأ أيضاً

We are aiming to construct Quark Hadron Physics and Confinement Physics based on QCD. Using SU(3)$_c$ lattice QCD, we are investigating the three-quark potential at T=0 and $T e 0$, mass spectra of positive and negative-parity baryons in the octet a nd the decuplet representations of the SU(3) flavor, glueball properties at T=0 and $T e 0$. We study also Confinement Physics using lattice QCD. In the maximally abelian (MA) gauge, the off-diagonal gluon amplitude is strongly suppressed, and then the off-diagonal gluon phase shows strong randomness, which leads to a large effective off-diagonal gluon mass, $M_{rm off} simeq 1.2 {rm GeV}$. Due to the large off-diagonal gluon mass in the MA gauge, infrared QCD is abelianized like nonabelian Higgs theories. In the MA gauge, there appears a macroscopic network of the monopole world-line covering the whole system. From the monopole current, we extract the dual gluon field $B_mu$, and examine the longitudinal magnetic screening. We obtain $m_B simeq$ 0.5 GeV in the infrared region, which indicates the dual Higgs mechanism by monopole condensation. From infrared abelian dominance and infrared monopole condensation, low-energy QCD in the MA gauge is described with the dual Ginzburg-Landau (DGL) theory.
We study Higgs boson pair production processes at future hadron and lepton colliders including the photon collision option in several new physics models; i.e., the two-Higgs-doublet model, the scalar leptoquark model, the sequential fourth generation fermion model and the vector-like quark model. Cross sections for these processes can deviate significantly from the standard model predictions due to the one-loop correction to the triple Higgs boson coupling constant. For the one-loop induced processes such as $gg to hh$ and $gammagammato hh$, where $h$ is the (lightest) Higgs boson and $g$ and $gamma$ respectively represent a gluon and a photon, the cross sections can also be affected by new physics particles via additional one-loop diagrams. In the two-Higgs-doublet model and scalar leptoquark models, cross sections of $e^+e^-to hhZ$ and $gammagammato hh$ can be enhanced due to the non-decoupling effect in the one-loop corrections to the triple Higgs boson coupling constant. In the sequential fourth generation fermion model, the cross section for $ggto hh$ becomes very large because of the loop effect of the fermions. In the vector-like quark model, effects are small because the theory has decoupling property. Measurements of the Higgs boson pair production processes can be useful to explore new physics through the determination of the Higgs potential.
Between the years 2015 and 2019, members of the Horizon 2020-funded Innovative Training Network named AMVA4NewPhysics studied the customization and application of advanced multivariate analysis methods and statistical learning tools to high-energy ph ysics problems, as well as developed entirely new ones. Many of those methods were successfully used to improve the sensitivity of data analyses performed by the ATLAS and CMS experiments at the CERN Large Hadron Collider; several others, still in the testing phase, promise to further improve the precision of measurements of fundamental physics parameters and the reach of searches for new phenomena. In this paper, the most relevant new tools, among those studied and developed, are presented along with the evaluation of their performances.
118 - Wu-Ki Tung 2004
The role of global QCD analysis of parton distribution functions (PDFs) in collider physics at the Tevatron and LHC is surveyed. Current status of PDF analyses are reviewed, emphasizing the uncertainties and the open issues. The stability of NLO QCD global analysis and its prediction on standard candle W/Z cross sections at hadron colliders are investigated. The importance of the precise measurement of various W/Z cross sections at the Tevatron in advancing our knowledge of PDFs, hence in enhancing the capabilities of making significant progress in W mass and top quark parameter measurements, as well as the discovery potentials of Higgs and New Physics at the Tevatron and LHC, is emphasized.
122 - Wolfgang Bietenholz 2016
We sketch the basic ideas of the lattice regularization in Quantum Field Theory, the corresponding Monte Carlo simulations, and applications to Quantum Chromodynamics (QCD). This approach enables the numerical measurement of observables at the non-pe rturbative level. We comment on selected results, with a focus on hadron masses and the link to Chiral Perturbation Theory. At last we address two outstanding issues: topological freezing and the sign problem.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا