ﻻ يوجد ملخص باللغة العربية
We apply a perturbative approach to evaluate the Casimir energy for a massless real scalar field in 3+1 dimensions, subject to Dirichlet boundary conditions on two surfaces. One of the surfaces is assumed to be flat, while the other corresponds to a small deformation, described by a single function $eta$, of a flat mirror. The perturbative expansion is carried out up to the fourth order in the deformation $eta$, and the results are applied to the calculation of the Casimir energy for corrugated mirrors in front of a plane. We also reconsider the proximity force approximation within the context of this expansion.
In this paper we study the behavior of the Casimir energy of a multi-cavity across the transition from the metallic to the superconducting phase of the constituting plates. Our analysis is carried out in the framework of the ARCHIMEDES experiment, ai
Nucleon structure functions can be observed in Deep Inelastic Scattering experiments, but it is an outstanding challenge to confront them with fully non-perturbative QCD results. For this purpose we investigate the product of electromagnetic currents
We study the effects of light-cone fluctuations on the renormalized zero-point energy associated with a free massless scalar field in the presence of boundaries. In order to simulate light-cone fluctuations we introduce a space-time dependent random
In this paper we study the Casimir energy of QCD within the Gribov-Zwanziger approach. In this model non-perturbative effects of gauge copies are properly taken into account. We show that the computation of the Casimir energy for the MIT bag model wi
The influence of a spherical boundary on the vacuum fluctuations of a massive scalar field is investigated in background of $(D+1)$-dimensional Milne universe, assuming that the field obeys Robin boundary condition on the sphere. The normalized mode