ترغب بنشر مسار تعليمي؟ اضغط هنا

We study the evolution of the star formation rate (SFR) - stellar mass (M_star) relation and specific star formation rate (sSFR) of star forming galaxies (SFGs) since a redshift z~5.5 using 2435 (4531) galaxies with highly reliable (reliable) spectro scopic redshifts in the VIMOS Ultra-Deep Survey (VUDS). It is the first time that these relations can be followed over such a large redshift range from a single homogeneously selected sample of galaxies with spectroscopic redshifts. The log(SFR) - log(M_star) relation for SFGs remains roughly linear all the way up to z=5 but the SFR steadily increases at fixed mass with increasing redshift. We find that for stellar masses M_star>3.2 x 10^9 M_sun the SFR increases by a factor ~13 between z=0.4 and z=2.3. We extend this relation up to z=5, finding an additional increase in SFR by a factor 1.7 from z=2.3 to z=4.8 for masses M_star > 10^10 M_sun. We observe a turn-off in the SFR-M_star relation at the highest mass end up to a redshift z~3.5. We interpret this turn-off as the signature of a strong on-going quenching mechanism and rapid mass growth. The sSFR increases strongly up to z~2 but it grows much less rapidly in 2<z<5. We find that the shape of the sSFR evolution is not well reproduced by cold gas accretion-driven models or the latest hydrodynamical models. Below z~2 these models have a flatter evolution (1+z)^{Phi} with Phi=2-2.25 compared to the data which evolves more rapidly with Phi=2.8+-0.2. Above z~2, the reverse is happening with the data evolving more slowly with Phi=1.2+-0.1. The observed sSFR evolution over a large redshift range 0<z<5 and our finding of a non linear main sequence at high mass both indicate that the evolution of SFR and M_star is not solely driven by gas accretion. The results presented in this paper emphasize the need to invoke a more complex mix of physical processes {abridge}
We studied the chronology of galactic bulge and disc formation by analysing the relative contributions of these components to the B-band rest-frame luminosity density at different epochs. We present the first estimate of the evolution of the fraction of rest-frame B-band light in galactic bulges and discs since redshift z~0.8. We performed a bulge-to-disc decomposition of HST/ACS images of 3266 galaxies in the zCOSMOS-bright survey with spectroscopic redshifts in the range 0.7 < z < 0.9. We find that the fraction of B-band light in bulges and discs is $(26 pm 4)%$ and $(74 pm 4)%$, respectively. When compared with rest-frame B-band measurements of galaxies in the local Universe in the same mass range ($10^{9} M_{odot}lessapprox M lessapprox 10^{11.5} M_{odot}$), we find that the B-band light in discs decreases by ~30% from z~0.7-0.9 to z~0, while the light from the bulge increases by ~30% over the same period of time. We interpret this evolution as the consequence of star formation and mass assembly processes, as well as morphological transformation, which gradually shift stars formed at half the age of the Universe from star-forming late-type/irregular galaxies toearlier types and ultimately into spheroids.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا