ﻻ يوجد ملخص باللغة العربية
We study the evolution of the star formation rate (SFR) - stellar mass (M_star) relation and specific star formation rate (sSFR) of star forming galaxies (SFGs) since a redshift z~5.5 using 2435 (4531) galaxies with highly reliable (reliable) spectroscopic redshifts in the VIMOS Ultra-Deep Survey (VUDS). It is the first time that these relations can be followed over such a large redshift range from a single homogeneously selected sample of galaxies with spectroscopic redshifts. The log(SFR) - log(M_star) relation for SFGs remains roughly linear all the way up to z=5 but the SFR steadily increases at fixed mass with increasing redshift. We find that for stellar masses M_star>3.2 x 10^9 M_sun the SFR increases by a factor ~13 between z=0.4 and z=2.3. We extend this relation up to z=5, finding an additional increase in SFR by a factor 1.7 from z=2.3 to z=4.8 for masses M_star > 10^10 M_sun. We observe a turn-off in the SFR-M_star relation at the highest mass end up to a redshift z~3.5. We interpret this turn-off as the signature of a strong on-going quenching mechanism and rapid mass growth. The sSFR increases strongly up to z~2 but it grows much less rapidly in 2<z<5. We find that the shape of the sSFR evolution is not well reproduced by cold gas accretion-driven models or the latest hydrodynamical models. Below z~2 these models have a flatter evolution (1+z)^{Phi} with Phi=2-2.25 compared to the data which evolves more rapidly with Phi=2.8+-0.2. Above z~2, the reverse is happening with the data evolving more slowly with Phi=1.2+-0.1. The observed sSFR evolution over a large redshift range 0<z<5 and our finding of a non linear main sequence at high mass both indicate that the evolution of SFR and M_star is not solely driven by gas accretion. The results presented in this paper emphasize the need to invoke a more complex mix of physical processes {abridge}
Recent large surveys have found a reversal of the star formation rate (SFR)-density relation at z=1 from that at z=0 (e.g. Elbaz et al.; Cooper et al.), while the sign of the slope of the color-density relation remains unchanged (e.g. Cucciati et al.
We explore the evolution of the Stellar Mass-Star Formation Rate-Metallicity Relation using a set of 256 COSMOS and GOODS galaxies in the redshift range 1.90 < z < 2.35. We present the galaxies rest-frame optical emission-line fluxes derived from IR-
Aims. The aim of this work is to constrain the evolution of the fraction of Lya emitters among UV selected star forming galaxies at 2<z<6, and to measure the stellar escape fraction of Lya photons over the same redshift range. Methods. We exploit the
We present catalogues of stellar masses, star formation rates, and ancillary stellar population parameters for galaxies spanning $0<z<9$ from the Deep Extragalactic VIsible Legacy Survey (DEVILS). DEVILS is a deep spectroscopic redshift survey with v
We study a large galaxy sample from the Spitzer Matching Survey of the UltraVISTA ultra-deep Stripes (SMUVS) to search for sources with enhanced 3.6 micron fluxes indicative of strong Halpha emission at z=3.9-4.9. We find that the percentage of Halph