ﻻ يوجد ملخص باللغة العربية
We studied the chronology of galactic bulge and disc formation by analysing the relative contributions of these components to the B-band rest-frame luminosity density at different epochs. We present the first estimate of the evolution of the fraction of rest-frame B-band light in galactic bulges and discs since redshift z~0.8. We performed a bulge-to-disc decomposition of HST/ACS images of 3266 galaxies in the zCOSMOS-bright survey with spectroscopic redshifts in the range 0.7 < z < 0.9. We find that the fraction of B-band light in bulges and discs is $(26 pm 4)%$ and $(74 pm 4)%$, respectively. When compared with rest-frame B-band measurements of galaxies in the local Universe in the same mass range ($10^{9} M_{odot}lessapprox M lessapprox 10^{11.5} M_{odot}$), we find that the B-band light in discs decreases by ~30% from z~0.7-0.9 to z~0, while the light from the bulge increases by ~30% over the same period of time. We interpret this evolution as the consequence of star formation and mass assembly processes, as well as morphological transformation, which gradually shift stars formed at half the age of the Universe from star-forming late-type/irregular galaxies toearlier types and ultimately into spheroids.
This series of papers aims at understanding the formation and evolution of non-barred disc galaxies. We use the new spectro-photometric decomposition code, C2D, to separate the spectral information of bulges and discs of a statistically representativ
We present quantitative morphology measurements of a sample of optically selected group galaxies at 0.3 < z < 0.55 using the Hubble Space Telescope (HST) Advanced Camera for Surveys (ACS) and the GIM2D surface brightness--fitting software package. Th
The obscured accretion phase in BH growth is a key ingredient in many models linking the AGN activity with the evolution of their host galaxy. At present, a complete census of obscured AGN is still missing. The purpose of this work is to assess the r
We measure the spatial clustering of galaxies as a function of their morphological type at z~0.8, for the first time in a deep redshift survey with full morphological information. This is obtained by combining high-resolution HST imaging and VLT spec
We study the color structure of disk galaxies in the Groth strip at redshifts 0.1<z<1.2. Our aim is to test formation models in which bulges form before/after the disk. We find smooth color distributions with gentle outward blueing across the galaxy