ترغب بنشر مسار تعليمي؟ اضغط هنا

227 - B. Gaveau , L. Granger , M. Moreau 2014
Many thermodynamic relations involve inequalities, with equality if a process does not involve dissipation. In this article we provide equalities in which the dissipative contribution is shown to involve the relative entropy (a.k.a. Kullback-Leibler divergence). The processes considered are general time evolutions both in classical and quantum mechanics, and the initial state is sometimes thermal, sometimes partially so. By calculating a transport coefficient we show that indeed---at least in this case---the source of dissipation in that coefficient is the relative entropy.
In the physics literature ergodicity is taken to mean that a system, including a macroscopic one, visits all microscopic states in a relatively short time. We show that this is an impossibility even if that time is billions of years. We also suggest that this feature does not contradict most physical considerations since those considerations deal with correlations of only a few particles.
119 - L. S. Schulman 2013
An experimental test of the special state theory of quantum measurement is proposed. It should be feasible with present-day laboratory equipment and involves a slightly elaborated Stern-Gerlach setup. The special state theory is conservative with r espect to quantum mechanics, but radical with respect to statistical mechanics, in particular regarding the arrow of time. In this article background material is given on both quantum measurement and statistical mechanics aspects. For example, it is shown that future boundary conditions would not contradict experience, indicating that the fundamental equal-a-priori-probability assumption at the foundations of statistical mechanics is far too strong (since future conditioning reduces the class of allowed states). The test is based on a feature of this theory that was found necessary in order to recover standard (Born) probabilities in quantum measurements. Specifically, certain systems should have noise whose amplitude follows the long-tailed Cauchy distribution. This distribution is marked by the occasional occurrence of extremely large signals as well as a non-self-averaging property. The proposed test is a variant of the Stern-Gerlach experiment in which protocols are devised, some of which will require the presence of this noise, some of which will not. The likely observational schemes would involve the distinction between detection and non-detection of that noise. The signal to be detected (or not) would be either single photons in the visible and UV range or electric fields (and related excitations) in the neighborhood of the ends of the magnets.
120 - B. Gaveau , L. Granger , M. Moreau 2013
Many thermodynamic relations involve inequalities, with equality if a process does not involve dissipation. In this article we provide equalities in which the dissipative contribution is shown to involve the relative entropy (a.k.a. Kullback-Leibler divergence). The processes considered are general time evolutions both in classical and quantum mechanics, and the initial state is sometimes thermal, sometimes partially so. As an application, the relative entropy is related to transport coefficients.
Possible definitions for the relative momentum of identical particles are considered.
Several recent theories address the efficiency of a macroscopic thermodynamic motor at maximum power and question the so-called Curzon-Ahlborn (CA) efficiency. Considering the entropy exchanges and productions in an n-sources motor, we study the maxi mization of its power and show that the controversies are partly due to some imprecision in the maximization variables. When power is maximized with respect to the system temperatures, these temperatures are proportional to the square root of the corresponding source temperatures, which leads to the CA formula for a bi-thermal motor. On the other hand, when power is maximized with respect to the transitions durations, the Carnot efficiency of a bi-thermal motor admits the CA efficiency as a lower bound, which is attained if the duration of the adiabatic transitions can be neglected. Additionally, we compute the energetic efficiency, or sustainable efficiency, which can be defined for n sources, and we show that it has no other universal upper bound than 1, but that in certain situations, favorable for power production, it does not exceed 1/2.
143 - B. Gaveau , L. S. Schulman 2011
The phenomenon described by our title should surprise no one. What may be surprising though is how easy it is to produce a quantum system with this feature; moreover, that system is one that is often used for the purpose of showing how systems equili brate. The violation can be variously manifested. In our detailed example, bringing a detuned 2-level system into contact with a monochromatic reservoir does not cause it to relax to the reservoir temperature; rather, the system acquires the reservoirs level-occupation-ratio.
553 - L. S. Schulman 2009
Given a set of variables and the correlations among them, we develop a method for finding clustering among the variables. The method takes advantage of information implicit in higher-order (not just pairwise) correlations. The idea is to define a Pot ts model whose energy is based on the correlations. Each state of this model is a partition of the variables and a Monte Carlo method is used to identify states of lowest energy, those most consistent with the correlations. A set of the 100 or so lowest such partitions is then used to construct a stochastic dynamics (using the adjacency matrix of each partition) whose observable representation gives the clustering. Three examples are studied. For two of them the 3$^mathrm{rd}$ order correlations are significant for getting the clusters right. The last of these is a toy model of a biological system in which the joint action of several genes or proteins is necessary to accomplish a given process.
73 - L. S. Schulman 2008
The puzzle of the thermodynamic arrow of time reduces to the question of how the universe could have had lower entropy in the past. I show that no special entropy lowering mechanism (or fluctuation) is necessary. As a consequence of expansion, at a p articular epoch in the history of the universe a state that was near maximum entropy under the dominant short range forces becomes extremely unlikely, due to a switchover to newly dominant long range forces. This happened at about the time of decoupling, prior to which I make no statement about arrows. The role of cosmology in thermodynamics was first suggested by T. Gold.
We extend certain basic and general concepts of thermodynamics to discrete Markov systems exchanging work and heat with reservoirs. In this framework we show that the celebrated Clausius inequality can be generalized and becomes an equality, signific antly extending several recent results. We further show that achieving zero dissipation in a system implies that detailed balance obtains, and as a consequence there is zero power production. We obtain inequalities for power production under more general circumstances and show that near equilibrium obtaining maximum power production requires dissipation to be of the same order of magnitude.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا