ﻻ يوجد ملخص باللغة العربية
The puzzle of the thermodynamic arrow of time reduces to the question of how the universe could have had lower entropy in the past. I show that no special entropy lowering mechanism (or fluctuation) is necessary. As a consequence of expansion, at a particular epoch in the history of the universe a state that was near maximum entropy under the dominant short range forces becomes extremely unlikely, due to a switchover to newly dominant long range forces. This happened at about the time of decoupling, prior to which I make no statement about arrows. The role of cosmology in thermodynamics was first suggested by T. Gold.
In classical thermodynamics, heat cannot spontaneously pass from a colder system to a hotter system, which is called the thermodynamic arrow of time. However, if the initial states are entangled, the direction of the thermodynamic arrow of time may n
We investigate a thermodynamic arrow associated with quantum projective measurements in terms of the Jensen-Shannon divergence between the probability distribution of energy change caused by the measurements and its time reversal counterpart. Two phy
Quantum gravity, the initial low entropy state of the Universe, and the problem of time are interlocking puzzles. In this article, we address the origin of the arrow of time from a cosmological perspective motivated by a novel approach to quantum gra
Why time is a one-way corridor? Whats the origin of the arrow of time? We attribute the thermodynamic arrow of time as the direction of increasing quantum state complexity. Inspired by the work of Nielsen, Susskind and Micadei, we checked this hypoth
Recently a nonuniversal character of the leading spatial behavior of the thermodynamic Casimir force has been reported [X. S. Chen and V. Dohm, Phys. Rev. E {bf 66}, 016102 (2002)]. We reconsider the arguments leading to this observation and show tha