ترغب بنشر مسار تعليمي؟ اضغط هنا

We have discovered that Europa, Ganymede and Callisto are bright around 1.5 {mu}m even when not directly lit by sunlight, based on observations from the Hubble Space Telescope and the Subaru Telescope. The observations were conducted with non-siderea l tracking on Jupiter outside of the field of view to reduce the stray light subtraction uncertainty due to the close proximity of Jupiter. Their eclipsed luminosity was $10^{-6}$-$10^{-7}$ of their uneclipsed brightness, which is low enough that this phenomenon has been undiscovered until now. In addition, Europa in eclipse was <1/10 of the others at 1.5 {mu}m, a potential clue to the origin of the source of luminosity. Likewise, Ganymede observations were attempted at 3.6 {mu}m by the Spitzer Space Telescope but it was not detected, suggesting a significant wavelength dependence. The reason why they are luminous even when in the Jovian shadow is still unknown, but forward-scattered sunlight by haze in the Jovian upper atmosphere is proposed as the most plausible candidate. If this is the case, observations of these Galilean satellites while eclipsed by the Jovian shadow provide us a new technique to investigate Jovian atmospheric composition, and investigating the transmission spectrum of Jupiter by this method is important for investigating the atmosphere of extrasolar giant planets by transit spectroscopy.
The Extragalactic Background Light (EBL) as an integrated light from outside of our Galaxy includes information of the early universe and the Dark Ages. We analyzed the spectral data of the astrophysical diffuse emission obtained with the low-resolut ion spectroscopy mode on the AKARI Infra-Red Camera (IRC) in 1.8-5.3 um wavelength region. Although the previous EBL observation in this wavelength region is restricted to the observations by DIRBE and IRTS, this study adds a new independent result with negligible contamination of Galactic stars owing to higher sensitivity for point sources. Other two major foreground components, the zodiacal light (ZL) and the diffuse Galactic light (DGL), were subtracted by taking correlations with ZL brightness estimated by the DIRBE ZL model and with the 100 um dust thermal emission, respectively. The isotropic emission was obtained as EBL, which shows significant excess over integrated light of galaxies at <4 um. The obtained EBL is consistent with the previous measurements by IRTS and DIRBE.
We first obtained the spectrum of the diffuse Galactic light (DGL) at general interstellar space in 1.8-5.3 um wavelength region with the low-resolution prism spectroscopy mode of the AKARI Infra-Red Camera (IRC) NIR channel. The 3.3 um PAH band is d etected in the DGL spectrum at Galactic latitude |b| < 15 deg, and its correlations with the Galactic dust and gas are confirmed. The correlation between the 3.3 um PAH band and the thermal emission from the Galactic dust is expressed not by a simple linear correlation but by a relation with extinction. Using this correlation, the spectral shape of DGL at optically thin region (5 deg < |b| < 15 deg) was derived as a template spectrum. Assuming that the spectral shape of this template spectrum is uniform at any position, DGL spectrum can be estimated by scaling this template spectrum using the correlation between the 3.3 um PAH band and the thermal emission from the Galactic dust.
We present the near- and mid-infrared zodiacal light spectrum obtained with the AKARI Infra-Red Camera (IRC). A catalog of 278 spectra of the diffuse sky covering a wide range of Galactic and ecliptic latitudes was constructed. The wavelength range o f this catalog is 1.8-5.3 {mu}m with wavelength resolution of lambda /Delta lambda ~20. Advanced reduction methods specialized for the slit spectroscopy of diffuse sky spectra are developed for constructing the spectral catalog. Based on the comparison analysis of the spectra collected in different seasons and ecliptic latitudes, we confirmed that the spectral shape of the scattered component and the thermal emission component of the zodiacal light in our wavelength range does not show any dependence on location and time, but relative brightness between them varies with location. We also confirmed that the color temperature of the zodiacal emission at 3-5 {mu}m is 300+/-10 K at any ecliptic latitude. This emission is expected to be originated from sub-micron dust particles in the interplanetary space.
70 - K. Tsumura , T. Arai , J. Battle 2011
Absolute spectrophotometric measurements of diffuse radiation at 1 mu m to 2 mu m are crucial to our understanding of the radiative content of the Universe from nucleosynthesis since the epoch of reionization, the composition and structure of the Zod iacal dust cloud in our solar system, and the diffuse galactic light arising from starlight scattered by interstellar dust. The Low Resolution Spectrometer (LRS) on the rocket-borne Cosmic Infrared Background Experiment (CIBER) is a lambda / Delta lambda sim 15-30 absolute spectrophotometer designed to make precision measurements of the absolute near-infrared sky brightness between 0.75 mu m < lambda < 2.1 mu m. This paper presents the optical, mechanical and electronic design of the LRS, as well as the ground testing, characterization and calibration measurements undertaken before flight to verify its performance. The LRS is shown to work to specifications, achieving the necessary optical and sensitivity performance. We describe our understanding and control of sources of systematic error for absolute photometry of the near-infrared extragalactic background light.
334 - K. Tsumura , J. Battle , J. Bock 2010
Interplanetary dust (IPD) scatters solar radiation which results in the zodiacal light that dominates the celestial diffuse brightness at optical and near-infrared wavelengths. Both asteroid collisions and cometary ejections produce the IPD, but the relative contribution from these two sources is still unknown. The Low Resolution Spectrometer (LRS) onboard the Cosmic Infrared Background Experiment (CIBER) observed the astrophysical sky spectrum between 750 and 2100 nm over a wide range of ecliptic latitude. The resulting zodiacal light spectrum is redder than the solar spectrum, and shows a broad absorption feature, previously unreported, at approximately 900 nm, suggesting the existence of silicates in the IPD material. The spectral shape of the zodiacal light is isotropic at all ecliptic latitudes within the measurement error. The zodiacal light spectrum, including the extended wavelength range to 2500 nm using IRTS data, is qualitatively similar to the reflectance of S-type asteroids. This result can be explained by the proximity of S-type asteroidal dust to Earths orbit, and the relativily high albedo of asteridal dust compared with cometary dust.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا