ﻻ يوجد ملخص باللغة العربية
We present the near- and mid-infrared zodiacal light spectrum obtained with the AKARI Infra-Red Camera (IRC). A catalog of 278 spectra of the diffuse sky covering a wide range of Galactic and ecliptic latitudes was constructed. The wavelength range of this catalog is 1.8-5.3 {mu}m with wavelength resolution of lambda /Delta lambda ~20. Advanced reduction methods specialized for the slit spectroscopy of diffuse sky spectra are developed for constructing the spectral catalog. Based on the comparison analysis of the spectra collected in different seasons and ecliptic latitudes, we confirmed that the spectral shape of the scattered component and the thermal emission component of the zodiacal light in our wavelength range does not show any dependence on location and time, but relative brightness between them varies with location. We also confirmed that the color temperature of the zodiacal emission at 3-5 {mu}m is 300+/-10 K at any ecliptic latitude. This emission is expected to be originated from sub-micron dust particles in the interplanetary space.
The Extragalactic Background Light (EBL) as an integrated light from outside of our Galaxy includes information of the early universe and the Dark Ages. We analyzed the spectral data of the astrophysical diffuse emission obtained with the low-resolut
We first obtained the spectrum of the diffuse Galactic light (DGL) at general interstellar space in 1.8-5.3 um wavelength region with the low-resolution prism spectroscopy mode of the AKARI Infra-Red Camera (IRC) NIR channel. The 3.3 um PAH band is d
Interplanetary dust (IPD) scatters solar radiation which results in the zodiacal light that dominates the celestial diffuse brightness at optical and near-infrared wavelengths. Both asteroid collisions and cometary ejections produce the IPD, but the
Interplanetary dust (IPD) is thought to be recently supplied from asteroids and comets. Grain properties of the IPD can give us the information about the environment in the proto-solar system, and can be traced from the shapes of silicate features ar
Zodiacal emission is thermal emission from interplanetary dust. Its contribution to the sky brightness is non-negligible in the region near the ecliptic plane, even in the far-infrared (far-IR) wavelength regime. We analyse zodiacal emission observed