ترغب بنشر مسار تعليمي؟ اضغط هنا

Near-infrared Brightness of the Galilean Satellites Eclipsed in Jovian Shadow: A New Technique to Investigate Jovian Upper Atmosphere

57   0   0.0 ( 0 )
 نشر من قبل Kohji Tsumura
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We have discovered that Europa, Ganymede and Callisto are bright around 1.5 {mu}m even when not directly lit by sunlight, based on observations from the Hubble Space Telescope and the Subaru Telescope. The observations were conducted with non-sidereal tracking on Jupiter outside of the field of view to reduce the stray light subtraction uncertainty due to the close proximity of Jupiter. Their eclipsed luminosity was $10^{-6}$-$10^{-7}$ of their uneclipsed brightness, which is low enough that this phenomenon has been undiscovered until now. In addition, Europa in eclipse was <1/10 of the others at 1.5 {mu}m, a potential clue to the origin of the source of luminosity. Likewise, Ganymede observations were attempted at 3.6 {mu}m by the Spitzer Space Telescope but it was not detected, suggesting a significant wavelength dependence. The reason why they are luminous even when in the Jovian shadow is still unknown, but forward-scattered sunlight by haze in the Jovian upper atmosphere is proposed as the most plausible candidate. If this is the case, observations of these Galilean satellites while eclipsed by the Jovian shadow provide us a new technique to investigate Jovian atmospheric composition, and investigating the transmission spectrum of Jupiter by this method is important for investigating the atmosphere of extrasolar giant planets by transit spectroscopy.

قيم البحث

اقرأ أيضاً

119 - L.N. Fletcher 2017
Jupiters banded appearance may appear unchanging to the casual observer, but closer inspection reveals a dynamic, ever-changing system of belts and zones with distinct cycles of activity. Identification of these long-term cycles requires access to da tasets spanning multiple jovian years, but explaining them requires multi-spectral characterization of the thermal, chemical, and aerosol changes associated with visible color variations. The Earth-based support campaign for Junos exploration of Jupiter has already characterized two upheaval events in the equatorial and temperate belts that are part of long-term jovian cycles, whose underlying sources could be revealed by Junos exploration of Jupiters deep atmosphere.
98 - Elyar Sedaghati 2017
We derive the 0.01 $mu$m binned transmission spectrum, between 0.74 and 1.0 $mu$m, of WASP-80b from low resolution spectra obtained with the FORS2 instrument attached to ESOs Very Large Telescope. The combination of the fact that WASP-80 is an active star, together with instrumental and telluric factors, introduces correlated noise in the observed transit light curves, which we treat quantitatively using Gaussian Processes. Comparison of our results together with those from previous studies, to theoretically calculated models reveals an equilibrium temperature in agreement with the previously measured value of 825K, and a sub-solar metallicity, as well as an atmosphere depleted of molecular species with absorption bands in the IR ($gg 5sigma$). Our transmission spectrum alone shows evidence for additional absorption from the potassium core and wing, whereby its presence is detected from analysis of narrow 0.003 $mu$m bin light curves ($gg 5sigma$). Further observations with visible and near-UV filters will be required to expand this spectrum and provide more in-depth knowledge of the atmosphere. These detections are only made possible through an instrument-dependent baseline model and a careful analysis of systematics in the data.
The one-meter telescope-reflector `Saturn (D=1 m, F = 4 m) was partially renovated at the Pulkovo observatory at the end of 2014. The telescope was equipped by CCD camera S2C with 14x14 arcmin field of view and 824 mas per pix scale. The observations of outer Jovian satellites have been performed in a test mode since January 2015. The exposure time of 30 seconds allows us to obtain images of stars up to magnitude 19.5 with the present state of the mirror and the equipment. The observations of outer Jovian satellites have been performed during testing period. These objects are interesting targets because their astrometric observations required to improve ephemeris and dynamic studies. Satellites positions have been determined on the basis of CCD images obtained within 6 nights. Astrometric reduction is performed by linear method using HCRF/UCAC4 and HCRF/URAT1. Internal accuracy of satellites positions has been estimated as 20 - 100 mas. The absolute values of residuals O-C do not exceed 100 mas in most cases. The independent tests have been carried out by the direct comparison with the results of observations of the Jovian satellite Himalia performed simultaneously by the Normal astrograph (the largest difference was 113 mas). This work has been partially supported by RFBR (12-02-00675-a) and the 22 Program of RAS Praesidium.
We report the detection of eighteen Jovian planets discovered as part of our Doppler survey of subgiant stars at Keck Observatory, with follow-up Doppler and photometric observations made at McDonald and Fairborn Observatories, respectively. The host stars have masses 0.927 < Mstar /Msun < 1.95, radii 2.5 < Rstar/Rsun < 8.7, and metallicities -0.46 < [Fe/H] < +0.30. The planets have minimum masses 0.9 MJup < MP sin i <3 MJup and semima jor axes a > 0.76 AU. These detections represent a 50% increase in the number of planets known to orbit stars more massive than 1.5 Msun and provide valuable additional information about the properties of planets around stars more massive thantheSun.
The Jovian Trojans are two swarms of small objects that share Jupiters orbit, clustered around the leading and trailing Lagrange points, L$_4$ and L$_5$. In this work, we investigate the Jovian Trojan population using the technique of astrocladistics , an adaptation of the `tree of life approach used in biology. We combine colour data from WISE, SDSS, Gaia DR2 and MOVIS surveys with knowledge of the physical and orbital characteristics of the Trojans, to generate a classification tree composed of clans with distinctive characteristics. We identify 48 clans, indicating groups of objects that possibly share a common origin. Amongst these are several that contain members of the known collisional families, though our work identifies subtleties in that classification that bear future investigation. Our clans are often broken into subclans, and most can be grouped into 10 superclans, reflecting the hierarchical nature of the population. Outcomes from this project include the identification of several high priority objects for additional observations and as well as providing context for the objects to be visited by the forthcoming textit{Lucy} mission. Our results demonstrate the ability of astrocladistics to classify multiple large and heterogeneous composite survey datasets into groupings useful for studies of the origins and evolution of our Solar system.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا