ترغب بنشر مسار تعليمي؟ اضغط هنا

We have investigated polyyne and cumulene prototypes based on the density-functional theory. Our independent-particle spectra show that the various carbynes can be distinguished by optical properties comparing the low-energy spectral structure as wel l as using very general considerations. The latter conclusion is supported by results based on the random-phase approximation including local-field effects.
We have studied the normal modes of hydrogenated and oxidized silicon nanocrystals, namely SiH4 (silan), H2SiO (silanon), Si10H16 and Si10H14O. The small clusters (SiH4 and H2SiO) have been used for convergence tests and their bondlengths and frequen cies have been compared with experimental and theoretical reference data. For the large clusters (Si10H16 and Si10H14O) we have investigated the vibrational density of states where we have identified the oxygen-related spectral features. The vibrational modes have been also analyzed with respect to the displacement patterns. The calculations have been carried out within the density-functional and density-functional perturbation theory using the local-density approximation.
We present a scheme for the improved description of the long-range interatomic force constants in a more accurate way than the procedure which is commonly used within plane-wave based density-functional perturbation-theory calculations. Our scheme is based on the inclusion of a q point grid which is denser in a restricted area around the center of the Brillouin Zone than in the remaining parts, even though the method is not limited to an area around Gamma. We have tested the validity of our procedure in the case of high-pressure phases of bulk silicon considering the bct and sh structure.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا