ترغب بنشر مسار تعليمي؟ اضغط هنا

Ab-initio calculation of phonon dispersion curves: accelerating q point convergence

361   0   0.0 ( 0 )
 نشر من قبل Katalin Ga\\'al-Nagy
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a scheme for the improved description of the long-range interatomic force constants in a more accurate way than the procedure which is commonly used within plane-wave based density-functional perturbation-theory calculations. Our scheme is based on the inclusion of a q point grid which is denser in a restricted area around the center of the Brillouin Zone than in the remaining parts, even though the method is not limited to an area around Gamma. We have tested the validity of our procedure in the case of high-pressure phases of bulk silicon considering the bct and sh structure.

قيم البحث

اقرأ أيضاً

We present the first wavelet-based all-electron density-functional calculations to include gradient corrections and the first in a solid. Direct comparison shows this approach to be unique in providing systematic ``transparent convergence, convergenc e with a priori prediction of errors, to beyond chemical (millihartree) accuracy. The method is ideal for exploration of materials under novel conditions where there is little experience with how traditional methods perform and for the development and use of chemically accurate density functionals, which demand reliable access to such precision.
We report first principles calculations of the phonon dispersions of PbTe both for its observed structure and under compression. At the experimental lattice parameter we find a near instability of the optic branch at the zone center, in accord with e xperimental observations.This hardens quickly towards the zone boundary. There is also a very strong volume dependence of this mode, which is rapidly driven away from an instability by compression. These results are discussed inrelation to the thermal conductivity of the material.
Several research groups have recently reported {em ab initio} calculations of the melting properties of metals based on density functional theory, but there have been unexpectedly large disagreements between results obtained by different approaches. We analyze the relations between the two main approaches, based on calculation of the free energies of solid and liquid and on direct simulation of the two coexisting phases. Although both approaches rely on the use of classical reference systems consisting of parameterized empirical interaction models, we point out that in the free energy approach the final results are independent of the reference system, whereas in the current form of the coexistence approach they depend on it. We present a scheme for correcting the predictions of the coexistence approach for differences between the reference and {em ab initio} systems. To illustrate the practical operation of the scheme, we present calculations of the high-pressure melting properties of iron using the corrected coexistence approach, which agree closely with earlier results from the free energy approach. A quantitative assessment is also given of finite-size errors, which we show can be reduced to a negligible size.
202 - G.Y. Guo , Yugui Yao , 2005
Relativistic band theoretical calculations reveal that intrinsic spin Hall conductivity in hole-doped archetypical semiconductors Ge, GaAs and AlAs is large $[sim 100 (hbar/e)(Omega cm)^{-1}]$, showing the possibility of spin Hall effect beyond the f our band Luttinger Hamiltonian. The calculated orbital-angular-momentum (orbital) Hall conductivity is one order of magnitude smaller, indicating no cancellation between the spin and orbital Hall effects in bulk semiconductors. Furthermore, it is found that the spin Hall effect can be strongly manipulated by strains, and that the $ac$ spin Hall conductivity in the semiconductors is large in pure as well as doped semiconductors.
Despite their rich information content, electronic structure data amassed at high volumes in ab initio molecular dynamics simulations are generally under-utilized. We introduce a transferable high-fidelity neural network representation of such data i n the form of tight-binding Hamiltonians for crystalline materials. This predictive representation of ab initio electronic structure, combined with machine-learning boosted molecular dynamics, enables efficient and accurate electronic evolution and sampling. When applied to a one-dimension charge-density wave material, carbyne, we are able to compute the spectral function and optical conductivity in the canonical ensemble. The spectral functions evaluated during soliton-antisoliton pair annihilation process reveal significant renormalization of low-energy edge modes due to retarded electron-lattice coupling beyond the Born-Oppenheimer limit. The availability of an efficient and reusable surrogate model for the electronic structure dynamical system will enable calculating many interesting physical properties, paving way to previously inaccessible or challenging avenues in materials modeling.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا