ترغب بنشر مسار تعليمي؟ اضغط هنا

We consider the $X(3872)$ resonance as a $J^{PC}=1^{++}$ $Dbar D^*$ hadronic molecule. According to heavy quark spin symmetry, there will exist a partner with quantum numbers $2^{++}$, $X_{2}$, which would be a $D^*bar D^*$ loosely bound state. The $ X_{2}$ is expected to decay dominantly into $Dbar D$, $Dbar D^*$ and $bar D D^*$ in $d$-wave. In this work, we calculate the decay widths of the $X_{2}$ resonance into the above channels, as well as those of its bottom partner, $X_{b2}$, the mass of which comes from assuming heavy flavor symmetry for the contact terms. We find partial widths of the $X_{2}$ and $X_{b2}$ of the order of a few MeV. Finally, we also study the radiative $X_2to Dbar D^{*}gamma$ and $X_{b2} to bar B B^{*}gamma$ decays. These decay modes are more sensitive to the long-distance structure of the resonances and to the $Dbar D^{*}$ or $Bbar B^{*}$ final state interaction.
We investigate heavy quark symmetries for heavy light meson-antimeson systems in a contact-range effective field theory. In the SU(3) light flavor limit, the leading order Lagrangian respecting heavy quark spin symmetry contains four independent coun ter-terms. Neglecting $1/m_Q$ corrections, three of these low energy constants can be determ1ined by theorizing a molecular description of the $X(3872)$ and $Z_b(10610)$ states. Thus, we can predict new hadronic molecules, in particular the isovector charmonium partners of the $Z_b(10610)$ and the $Z_b(10650)$ states. We also discuss hadron molecules composed of a heavy meson and a doubly-heavy baryon, which would be related to the heavy meson-antimeson molecules thanks to the heavy antiquark-diquark symmetry. Finally, we also study the $X(3872) to D^0bar D^0pi^0$ decay, which is not only sensitive to the short distance part of the $X(3872)$ molecular wave function, as the $J/psipipi$ and $J/psi3pi$ $X(3872)$ decay modes are, but it is also affected by the long-distance structure of the resonance. Furthermore, this decay might provide some information on the interaction between the $Dbar D$ charm mesons.
119 - J. Nieves , R. Gran , I. Ruiz Simo 2014
RPA correlations, spectral function and 2p2h (multi-nucleon) effects on charged-current neutrino-nucleus reactions without emitted pions are discussed. We pay attention to the influence of RPA and multi-nucleon mechanisms on the MiniBooNE and MINERvA flux folded differential cross sections, the MiniBooNE flux unfolded total cross section and the neutrino energy reconstruction.
We investigate heavy quark symmetries for heavy meson hadronic molecules, and explore the consequences of assuming the X(3872) and $Z_b(10610)$ as an isoscalar $Dbar D^*$ and an isovector $Bbar B^*$ hadronic molecules, respectively. The symmetry allo ws to predict new hadronic molecules, in particular we find an isoscalar $1^{++}$ $Bbar B^*$ bound state with a mass about 10580 MeV and the isovector charmonium partners of the $Z_b(10610)$ and the $Z_b(10650)$ states. Next, we study the $X(3872) to D^0 bar D^0pi^0$ three body decay. This decay mode is more sensitive to the long-distance structure of the X(3872) resonance than its $J/psipipi$ and $J/psi3pi$ decays, which are mainly controlled by the short distance part of the X(3872) molecular wave function. We discuss the $D^0 bar D^0$ final state interactions, which in some situations become quite important. Indeed in these cases, a precise measurement of this partial decay width could provide precise information on the interaction strength between the $D^{(*)}bar D^{(*)}$ charm mesons.
80 - J Nieves , R Gran , F Sanchez 2013
We discuss some nuclear effects, RPA correlations and 2p2h (multinucleon) mechanisms, on charged-current neutrino-nucleus reactions that do not produce a pion in the final state. We study a wide range of neutrino energies, from few hundreds of MeV up to 10 GeV. We also examine the influence of 2p2h mechanisms on the neutrino energy reconstruction.
We explore the consequences of heavy flavour, heavy quark spin and heavy antiquark-diquark symmetries for hadronic molecules within an effective field theory framework.. Owing to heavy antiquark-diquark symmetry, the doubly heavy baryons have approxi mately the same light-quark structure as the heavy antimesons. As a consequence, the existence of a heavy meson-antimeson molecule implies the possibility of a partner composed of a heavy meson and a doubly-heavy baryon. In this regard, the Dbar D* molecular nature of the X(3872) will hint at the existence of several baryonic partners with isospin I=0 and J^P = 5/2^- or 3/2^-. Moreover, if the Zb(10650) turns out to be a B*bar B* bound state, we can be confident of the existence of Xibb* bar B* hadronic molecules with quantum numbers I(J^P) = 1(1/2^-) and I(J^P) = 1(3/2^-). These states are of special interest since they can be considered to be triply-heavy pentaquarks.
We study one pion production in both charged and neutral current neutrino nucleus scattering for neutrino energies below 2 GeV. We use a theoretical model for one pion production at the nucleon level that we correct for medium effects. The results ar e incorporated into a cascade program that apart from production also includes the pion final state interaction inside the nucleus. Besides, in some specific channels coherent pion production is also possible and we evaluate its contribution as well. Our results for total and differential cross sections are compared with recent data from the MiniBooNE Collaboration. The model provides an overall acceptable description of data, better for NC than for CC channels, although theory is systematically below data. Differential cross sections, folded with the full neutrino flux, show that most of the missing pions lie on the forward direction and at high energies.
We evaluate the quasielastic and multinucleon contributions to the antineutrino nucleus scattering cross section and compare our results with the recent MiniBooNE data. We use a local Fermi gas model that includes RPA correlations and gets the multin ucleon part from a systematic many body expansion of the $W$ boson selfenergy in the nuclear medium. The same model had been quite successful for the neutrino cross section and contains no new parameters. We have also analysed the relevance of 2p2h events for the antineutrino energy reconstruction.
We use a consistent SU(6) extension of the meson-baryon chiral Lagrangian within a coupled channel unitary approach in order to calculate the T-matrix for meson-baryon scattering in s-wave. The building blocks of the scheme are the pion and nucleon o ctets, the rho nonet and the Delta decuplet. We identify poles in this unitary T-matrix and interpret them as resonances. We study here the non exotic sectors with strangeness S=0,-1,-2,-3 and spin J=1/2, 3/2 and 5/2. Many of the poles generated can be associated with known N, Delta, Sigma, Lambda and Xi resonances with negative parity. We show that most of the low-lying three and four star odd parity baryon resonances with spin 1/2 and 3/2 can be related to multiplets of the spin-flavor symmetry group SU(6). This study allows us to predict the spin-parity of the Xi(1620), Xi(1690), Xi(1950), Xi(2250), Omega(2250) and Omega(2380) resonances, which have not been determined experimentally yet.
Consistent SU(6) and SU(8) spin-flavor extensions of the SU(3) flavor Weinberg-Tomozawa (WT) meson-baryon chiral Lagrangian are constructed, which incorporate vector meson degrees of freedom. In the charmless sector, the on-shell approximation to the Bethe-Salpeter (BS) approach successfully reproduces previous SU(3) WT results for the lowest-lying s--wave negative parity baryon resonances. It also provides some information on the dynamics of heavier ones and of the lightest d-wave negative parity resonances, as e.g. the Lambda(1520). For charmed baryons the scheme is consistent with heavy quark symmetry, and our preliminary results in the strangeness-less charm C=+1 sector describe the main features of the three-star J^P=1/2^- Lambda_c(2595) and J^P=3/2^- Lambda_c(2625) resonances. We also find a second broad J^P=1/2^- state close to the Lambda_c(2595)
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا