ترغب بنشر مسار تعليمي؟ اضغط هنا

Neutrino-nucleus CCQE-like scattering

173   0   0.0 ( 0 )
 نشر من قبل Juan Nieves Dr.
 تاريخ النشر 2014
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

RPA correlations, spectral function and 2p2h (multi-nucleon) effects on charged-current neutrino-nucleus reactions without emitted pions are discussed. We pay attention to the influence of RPA and multi-nucleon mechanisms on the MiniBooNE and MINERvA flux folded differential cross sections, the MiniBooNE flux unfolded total cross section and the neutrino energy reconstruction.



قيم البحث

اقرأ أيضاً

In this article, we present the charged and neutral current coherent pion production in the neutrino-nucleus interaction in the resonance region using the formalism based on the partially conserved axial current (PCAC) theorem which relates the neutr ino-nucleus cross section to the pion-nucleus elastic cross section. The pion nucleus elastic cross section is calculated using the Glauber model approach. We calculate the integrated cross sections for neutrino-carbon, neutrino-iron and neutrino-oxygen scattering. The results of integrated cross-section calculations are compared with the measured data
The treatment of nuclear effects in neutrino-nucleus interactions is one of the main sources of systematic uncertainty for the analysis and interpretation of data of neutrino oscillation experiments. Neutrinos interact with nuclei via charged or neut ral currents and both cases must be studied to obtain a complete information. We give an overview of the theoretical work that has been done to describe nuclear effects in neutral-current neutrin onucleus scattering in the kinematic region ranging between beam energies of a few hundreds MeV to a few GeV, which is typical of most ongoing and future accelerator-based neutrino experiments, and where quasielastic scattering is the main interaction mechanism. We review the current status and challenges of the theoretical models, the role and relevance of the contributions of different nuclear effects, and the present status of the comparison between the numerical predictions of the models as well as the available experimental data. We discuss also the sensitivity to the strange form factors of the nucleon and the methods and observables that can allow one to obtain evidence for a possible strange quark contribution from measurements of neutrino and antineutrino-nucleus scattering.
The charged-current double differential neutrino cross section, measured by the MiniBooNE Collaboration, has been analyzed using a microscopical model that accounts for, among other nuclear effects, long range nuclear (RPA) correlations and multinucl eon scattering. We find that MiniBooNE data are fully compatible with the world average of the nucleon axial mass in contrast with several previous analyses which have suggested an anomalously large value. We also discuss the reliability of the algorithm used to estimate the neutrino energy.
We study one pion production in both charged and neutral current neutrino nucleus scattering for neutrino energies below 2 GeV. We use a theoretical model for one pion production at the nucleon level that we correct for medium effects. The results ar e incorporated into a cascade program that apart from production also includes the pion final state interaction inside the nucleus. Besides, in some specific channels coherent pion production is also possible and we evaluate its contribution as well. Our results for total and differential cross sections are compared with recent data from the MiniBooNE Collaboration. The model provides an overall acceptable description of data, better for NC than for CC channels, although theory is systematically below data. Differential cross sections, folded with the full neutrino flux, show that most of the missing pions lie on the forward direction and at high energies.
64 - M.Valverde 2006
The quasi-elastic contribution of the nuclear inclusive electron scattering model developed in A. Gil, J. Nieves, and E. Oset: Nucl. Phys. A 627 (1997) 543; is extended to the study of electroweak Charged Current (CC) induced nuclear reactions at int ermediate energies of interest for future neutrino oscillation experiments. The model accounts for long range nuclear (RPA) correlations, Final State Interaction and Coulomb corrections. RPA correlations are shown to play a crucial role in the whole range of neutrino energies, up to 500 MeV, studied in this work. Predictions for inclusive muon capture for different nuclei, and for the reactions $^{12}$C$( u_mu,mu^-)X$ and $^{12}$C$( u_e,e^-)X$ near threshold are also given.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا