ترغب بنشر مسار تعليمي؟ اضغط هنا

We study the imprint of new particles on the primordial cosmological fluctuations. New particles with masses comparable to the Hubble scale produce a distinctive signature on the non-gaussianities. This feature arises in the squeezed limit of the cor relation functions of primordial fluctuations. It consists of particular power law, or oscillatory, behavior that contains information about the masses of new particles. There is an angular dependence that gives information about the spin. We also have a relative phase that crucially depends on the quantum mechanical nature of the fluctuations and can be viewed as arising from the interference between two processes. While some of these features were noted before in the context of specific inflationary scenarios, here we give a general description emphasizing the role of symmetries in determining the final result.
165 - Juan Maldacena 2014
We describe the theoretical ideas, developed between the 1950s-1970s, which led to the prediction of the Higgs boson, the particle that was discovered in 2012. The forces of nature are based on symmetry principles. We explain the nature of these symm etries through an economic analogy. We also discuss the Higgs mechanism, which is necessary to avoid some of the naive consequences of these symmetries, and to explain various features of elementary particles.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا