ﻻ يوجد ملخص باللغة العربية
We study the imprint of new particles on the primordial cosmological fluctuations. New particles with masses comparable to the Hubble scale produce a distinctive signature on the non-gaussianities. This feature arises in the squeezed limit of the correlation functions of primordial fluctuations. It consists of particular power law, or oscillatory, behavior that contains information about the masses of new particles. There is an angular dependence that gives information about the spin. We also have a relative phase that crucially depends on the quantum mechanical nature of the fluctuations and can be viewed as arising from the interference between two processes. While some of these features were noted before in the context of specific inflationary scenarios, here we give a general description emphasizing the role of symmetries in determining the final result.
The quantum fluctuations of the Higgs field during inflation could be a source of primordial density perturbations through Higgs-dependent inflaton decay. By measuring primordial non-Gaussianities, this so-called Higgs-modulated reheating scenario pr
We study effects of multiple scalar fields (scalar isocurvatons) with the Hubble scale masses on the inflationary bispectrum in the squeezed limit, particular paying attention to the question how to disentangle mass spectra of such fields. We conside
Non-analyticity in co-moving momenta within the non-Gaussian bispectrum is a distinctive sign of on-shell particle production during inflation, presenting a unique opportunity for the direct detection of particles with masses as large as the inflatio
We study the production of massive gauge bosons during inflation from the axion-type coupling to the inflaton and the corresponding oscillatory features in the primordial non-Gaussianity. In a window in which both the gauge boson mass and the chemica
Heavy-ion colliders have revealed the process of fast thermalization. This experimental breakthrough has led to new theoretical tools to study the thermalization process at both weak and strong coupling. We apply this to the reheating epoch of inflat