ﻻ يوجد ملخص باللغة العربية
We describe the theoretical ideas, developed between the 1950s-1970s, which led to the prediction of the Higgs boson, the particle that was discovered in 2012. The forces of nature are based on symmetry principles. We explain the nature of these symmetries through an economic analogy. We also discuss the Higgs mechanism, which is necessary to avoid some of the naive consequences of these symmetries, and to explain various features of elementary particles.
We consider multi-Higgs-doublet models which, for symmetry reasons, have a universal Higgs-Yukawa (HY) coupling, $g$. This is identified with the top quark $g=g_tapprox 1$. The models are concordant with the quasi-infrared fixed point, and the top qu
The 2016 Physics Nobel Prize honors a variety of discoveries related to topological phases and phase transitions. Here we sketch two exciting facets: the groundbreaking works by John Kosterlitz and David Thouless on phase transitions of infinite orde
The August 2011 Higgs mass prediction was based on an ongoing six year project studying M-theory compactified on a manifold of G2 holonomy, with significant contributions from Jing Shao, Eric Kuflik, and others, and particularly co-led by Bobby Achar
Using interpolators with different SU(2)_L times SU(2)_R transformation properties we study the chiral symmetry and spin contents of the rho- and rho-mesons in lattice simulations with dynamical quarks. A ratio of couplings of the $qbargamma^i{tau}q$
From the parton distributions in the infinite momentum frame one finds that only about 30% of the nucleon spin is carried by spins of the valence quarks, which gave rise to the term spin crisis. Similar results hold for the lowest mesons, as it follo