ترغب بنشر مسار تعليمي؟ اضغط هنا

Weakly Interacting Massive Particles (WIMPs) are well-established dark matter candidates. WIMP interactions with sensitive detectors are expected to display a characteristic annual modulation in rate. We release a dataset spanning 3.4 years of operat ion from a low-background germanium detector, designed to search for this signature. A previously reported modulation persists, concentrated in a region of the energy spectrum populated by an exponential excess of unknown origin. Its phase and period agree with phenomenological expectations, but its amplitude is a factor $sim$4-7 larger than predicted for a standard WIMP galactic halo. We consider the possibility of a non-Maxwellian local halo velocity distribution as a plausible explanation, able to help reconcile recently reported WIMP search anomalies.
Fifteen months of cumulative CoGeNT data are examined for indications of an annual modulation, a predicted signature of Weakly Interacting Massive Particle (WIMP) interactions. Presently available data support the presence of a modulated component of unknown origin, with parameters prima facie compatible with a galactic halo composed of light-mass WIMPs. Unoptimized estimators yield a statistical significance for a modulation of ~2.8 sigma, limited by the short exposure.
We report on several features present in the energy spectrum from an ultra low-noise germanium detector operated at 2,100 m.w.e. By implementing a new technique able to reject surface events, a number of cosmogenic peaks can be observed for the first time. We discuss several possible causes for an irreducible excess of bulk-like events below 3 keVee, including a dark matter candidate common to the DAMA/LIBRA annual modulation effect, the hint of a signal in CDMS, and phenomenological predictions. Improved constraints are placed on a cosmological origin for the DAMA/LIBRA effect.
A claim for evidence of dark matter interactions in the DAMA experiment has been recently reinforced. We employ a new type of germanium detector to conclusively rule out a standard isothermal galactic halo of Weakly Interacting Massive Particles (WIM Ps) as the explanation for the annual modulation effect leading to the claim. Bounds are similarly imposed on a suggestion that dark pseudoscalars mightlead to the effect. We describe the sensitivity to light dark matter particles achievable with our device, in particular to Next-to-Minimal Supersymmetric Model candidates.
Bubble Chambers provided the dominant particle detection technology in accelerator experiments for several decades, eventually falling into disuse with the advent of other techniques. We report here on the first period of operation of an ultra-clean, room-temperature bubble chamber containing 1.5 kg of superheated CF$_{3}$I, a target maximally sensitive to spin-dependent and -independent Weakly Interacting Massive Particle (WIMP) couplings. An exposure in excess of 250 kg-days is obtained, with a live-time fraction reaching 80%. This illustrates the ability to employ bubble chambers in a new realm, the search for dark matter particles. Improved limits on the spin-dependent WIMP-proton scattering cross section are extracted from this first period. An extreme intrinsic insensitivity to the backgrounds commonly limiting these experiments (a rejection factor for photon-induced electrons of $sim10^{-10}$) has been measured in operating conditions leading to the detection of low-energy nuclear recoils such as those expected from WIMPs.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا