ترغب بنشر مسار تعليمي؟ اضغط هنا

Search for An Annual Modulation in Three Years of CoGeNT Dark Matter Detector Data

451   0   0.0 ( 0 )
 نشر من قبل Juan I. Collar
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Weakly Interacting Massive Particles (WIMPs) are well-established dark matter candidates. WIMP interactions with sensitive detectors are expected to display a characteristic annual modulation in rate. We release a dataset spanning 3.4 years of operation from a low-background germanium detector, designed to search for this signature. A previously reported modulation persists, concentrated in a region of the energy spectrum populated by an exponential excess of unknown origin. Its phase and period agree with phenomenological expectations, but its amplitude is a factor $sim$4-7 larger than predicted for a standard WIMP galactic halo. We consider the possibility of a non-Maxwellian local halo velocity distribution as a plausible explanation, able to help reconcile recently reported WIMP search anomalies.



قيم البحث

اقرأ أيضاً

An annual modulation signal due to the Earth orbiting around the Sun would be one of the strongest indications of the direct detection of dark matter. In 2016, we reported a search for dark matter by looking for this annual modulation with our single -phase liquid xenon XMASS-I detector. That analysis resulted in a slightly negative modulation amplitude at low energy. In this work, we included more than one year of additional data, which more than doubles the exposure to 800 live days with the same 832 kg target mass. When we assume weakly interacting massive particle (WIMP) dark matter elastically scattering on the xenon target, the exclusion upper limit for the WIMP-nucleon cross section was improved by a factor of 2 to 1.9$times$10$^{-41}$cm$^2$ at 8 GeV/c$^2$ at 90% confidence level with our newly implemented data selection through a likelihood method. For the model-independent case, without assuming any specific dark matter model, we obtained more consistency with the null hypothesis than before with a $p$-value of 0.11 in the 1$-$20 keV energy region. This search probed this region with an exposure that was larger than that of DAMA/LIBRA. We also did not find any significant amplitude in the data for periodicity with periods between 50 and 600 days in the energy region between 1 to 6 keV.
Fifteen months of cumulative CoGeNT data are examined for indications of an annual modulation, a predicted signature of Weakly Interacting Massive Particle (WIMP) interactions. Presently available data support the presence of a modulated component of unknown origin, with parameters prima facie compatible with a galactic halo composed of light-mass WIMPs. Unoptimized estimators yield a statistical significance for a modulation of ~2.8 sigma, limited by the short exposure.
A search for dark matter (DM) with mass in the sub-GeV region (0.32-1 GeV) was conducted by looking for an annual modulation signal in XMASS, a single-phase liquid xenon detector. Inelastic nuclear scattering accompanied by bremsstrahlung emission wa s used to search down to an electron equivalent energy of 1 keV. The data used had a live time of 2.8 years (3.5 years in calendar time), resulting in a total exposure of 2.38 ton-years. No significant modulation signal was observed and 90% confidence level upper limits of $1.6 times 10^{-33}$ cm$^2$ at 0.5 GeV was set for the DM-nucleon cross section. This is the first experimental result of a search for DM mediated by the bremsstrahlung effect. In addition, a search for DM with mass in the multi-GeV region (4-20 GeV) was conducted with a lower energy threshold than previous analysis of XMASS. Elastic nuclear scattering was used to search down to a nuclear recoil equivalent energy of 2.3 keV, and upper limits of 2.9 $times$10$^{-42}$ cm$^2$ at 8 GeV was obtained.
A search for dark matter was conducted by looking for an annual modulation signal due to the Earths rotation around the Sun using XMASS, a single phase liquid xenon detector. The data used for this analysis was 359.2 live days times 832 kg of exposur e accumulated between November 2013 and March 2015. When we assume Weakly Interacting Massive Particle (WIMP) dark matter elastically scattering on the target nuclei, the exclusion upper limit of the WIMP-nucleon cross section 4.3$times$10$^{-41}$cm$^2$ at 8 GeV/c$^2$ was obtained and we exclude almost all the DAMA/LIBRA allowed region in the 6 to 16 GeV/c$^2$ range at $sim$10$^{-40}$cm$^2$. The result of a simple modulation analysis, without assuming any specific dark matter model but including electron/$gamma$ events, showed a slight negative amplitude. The $p$-values obtained with two independent analyses are 0.014 and 0.068 for null hypothesis, respectively. we obtained 90% C.L. upper bounds that can be used to test various models. This is the first extensive annual modulation search probing this region with an exposure comparable to DAMA/LIBRA.
We report limits on annual modulation of the low-energy event rate from the Cryogenic Dark Matter Search (CDMS II) experiment at the Soudan Underground Laboratory. Such a modulation could be produced by interactions from Weakly Interacting Massive Pa rticles (WIMPs) with masses ~10 GeV/c^2. We find no evidence for annual modulation in the event rate of veto-anticoincident single-detector interactions consistent with nuclear recoils, and constrain the magnitude of any modulation to <0.06 event [keVnr kg day]^-1 in the 5-11.9 keVnr energy range at the 99% confidence level. These results disfavor an explanation for the reported modulation in the 1.2-3.2 keVee energy range in CoGeNT in terms of nuclear recoils resulting from elastic scattering of WIMPs at >98% confidence. For events consistent with electron recoils, no significant modulation is observed for either single- or multiple-detector interactions in the 3.0-7.4 keVee range.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا