ترغب بنشر مسار تعليمي؟ اضغط هنا

Experimental constraints on a dark matter origin for the DAMA annual modulation effect

154   0   0.0 ( 0 )
 نشر من قبل Juan I. Collar
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A claim for evidence of dark matter interactions in the DAMA experiment has been recently reinforced. We employ a new type of germanium detector to conclusively rule out a standard isothermal galactic halo of Weakly Interacting Massive Particles (WIMPs) as the explanation for the annual modulation effect leading to the claim. Bounds are similarly imposed on a suggestion that dark pseudoscalars mightlead to the effect. We describe the sensitivity to light dark matter particles achievable with our device, in particular to Next-to-Minimal Supersymmetric Model candidates.



قيم البحث

اقرأ أيضاً

252 - J. Amare , S. Cebrian , I. Coarasa 2019
ANAIS is a direct detection dark matter experiment aiming at the testing of the DAMA/LIBRA annual modulation result, which standing for about two decades has neither been confirmed nor ruled out by any other experiment in a model independent way. ANA IS-112, consisting of 112.5 kg of sodium iodide crystals, is taking data at the Canfranc Underground Laboratory, Spain, since August 2017. This letter presents the annual modulation analysis of 1.5 years of data, amounting to 157.55 kg$times$y. We focus on the model independent analysis searching for modulation and the validation of our sensitivity prospects. ANAIS-112 data are consistent with the null hypothesis (p-values of 0.65 and 0.16 for [2-6] and [1-6] keV energy regions, respectively). The best fits for the modulation hypothesis are consistent with the absence of modulation ($S_m$=-0.0044$pm$0.0058 cpd/kg/keV and -0.0015$pm$0.0063 cpd/kg/keV, respectively). They are in agreement with our estimated sensitivity for the accumulated exposure, supporting our projected goal of reaching a 3$sigma$ sensitivity to the DAMA/LIBRA result in 5 years of data taking.
72 - R. Cerulli 2017
The DAMA experiment using ultra low background NaI(Tl) crystal scintillators has measured an annual modulation effect in the keV region which satisfies all the peculiarities of an effect induced by Dark Matter particles. In this paper we analyze this annual modulation effect in terms of mirror Dark Matter, an exact duplicate of ordinary matter from parallel hidden sector, which chemical composition is dominated by mirror helium while it can also contain significant fractions of heavier elements as Carbon and Oxygen. Dark mirror atoms are considered to interact with the target nuclei in the detector via Rutherford-like scattering induced by kinetic mixing between mirror and ordinary photons, both being massless. In the present analysis we consider various possible scenarios for the mirror matter chemical composition. For all the scenarios, the relevant ranges for the kinetic mixing parameter have been obtained taking also into account various existing uncertainties in nuclear and particle physics quantities.
The long-standing model-independent annual modulation effect measured by DAMA Collaboration is examined in the context of asymmetric mirror dark matter, assuming that dark atoms interact with target nuclei in the detector via kinetic mixing between m irror and ordinary photons, both being massless. The relevant ranges for the kinetic mixing parameter are obtained taking into account various existing uncertainties in nuclear and particle physics quantities as well as characteristic density and velocity distributions of dark matter in different halo models.
We implement a test of the variability of the per-cycle annual modulation amplitude in the different phases of the DAMA/LIBRA experiment using Bayesian model comparison. Using frequentist methods, a previous study (Kelso et al 2018) had demonstrated that the DAMA amplitudes spanning over the DAMA/NaI and the first phase of the DAMA/LIBRA phases, show a mild preference for time-dependence in multiple energy bins. With that motivation, we first show using Bayesian techniques that the aforementioned data analyzed in Kelso et al, show a moderate preference for exponentially varying amplitudes in the 2-5 and 2-6 keV energy intervals. We then carry out a similar analysis on the latest modulation amplitudes released by the DAMA collaboration from the first two phases of the upgraded DAMA/LIBRA experiment. We also analyze the single-hit residual rates released by the DAMA collaboration to further look for any possible time-dependency. However, we do not find any evidence for variability of either of the two datasets by using Bayesian model selection. All our analysis codes and datasets have been made publicly available.
We present the results of a search for elastic scattering from galactic dark matter in the form of Weakly Interacting Massive Particles (WIMPs) in the 4-30 GeV/$c^2$ mass range. We make use of a 582 kg-day fiducial exposure from an array of 800 g Ger manium bolometers equipped with a set of interleaved electrodes with full surface coverage. We searched specifically for $sim 2.5-20$ keV nuclear recoils inside the detector fiducial volume. As an illustration the number of observed events in the search for 5 (resp. 20) GeV/$c^2$ WIMPs are 9 (resp. 4), compared to an expected background of 6.1 (resp. 1.4). A 90% CL limit of $4.3times 10^{-40}$ cm$^2$ (resp. $9.4times 10^{-44}$ cm$^2$) is set on the spin-independent WIMP-nucleon scattering cross-section for 5 (resp. 20) GeV/$c^2$ WIMPs. This result represents a 41-fold improvement with respect to the previous EDELWEISS-II low-mass WIMP search for 7 GeV/$c^2$ WIMPs. The derived constraint is in tension with hints of WIMP signals from some recent experiments, thus confirming results obtained with different detection techniques.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا