ترغب بنشر مسار تعليمي؟ اضغط هنا

139 - J. Vinko , F. Yuan , R. M. Quimby 2014
We present follow-up observations of an optical transient (OT) discovered by ROTSE on Jan. 21, 2009. Photometric monitoring was carried out with ROTSE-IIIb in the optical and Swift in the UV up to +70 days after discovery. The light curve showed a fa st rise time of ~10 days followed by a steep decline over the next 60 days, which was much faster than that implied by 56Ni - 56Co radioactive decay. The SDSS DR10 database contains a faint, red object at the position of the OT, which appears slightly extended. This and other lines of evidence suggest that the OT is of extragalactic origin, and this faint object is likely the host galaxy. A sequence of optical spectra obtained with the 9.2-m Hobby-Eberly Telescope (HET) between +8 and +45 days after discovery revealed a hot, blue continuum with no visible spectral features. A few weak features that appeared after +30 days probably originated from the underlying host. Fitting synthetic templates to the observed spectrum of the host galaxy revealed a redshift of z = 0.19. At this redshift the peak magnitude of the OT is close to -22.5, similar to the brightest super-luminous supernovae; however, the lack of identifiable spectral features makes the massive stellar death hypothesis less likely. A more plausible explanation appears to be the tidal disruption of a sun-like star by the central super-massive black hole. We argue that this transient likely belongs to a class of super-Eddington tidal disruption events.
The nearby, bright, almost completely unreddened Type Ia supernova 2011fe in M101 provides a unique opportunity to test both the precision and the accuracy of the extragalactic distances derived from SNe Ia light curve fitters. We apply the current, publ
155 - K. Sziladi , J. Vinko , E. Poretti 2007
Aims: We define the relationship between the double-mode pulsation of Cepheids and metallicity in a more accurate way, determine the empirical metallicities of double-mode Cepheids from homogeneous, high-resolution spectroscopic data, and study of th e period-ratio -- metallicity dependence. Methods: The high S/N echelle spectra obtained with the FEROS spectrograph were analyzed using a self-developed IRAF script, and the iron abundances were determined by comparing with synthetic spectra assuming LTE. Results: Accurate [Fe/H] values of 17 galactic beat Cepheids were determined. All these stars have solar or slightly subsolar metallicity. Their period ratio P1/P0 shows strong correlation with their derived [Fe/H] values. The corresponding period ratio -- metallicity relation has been evaluated.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا