ترغب بنشر مسار تعليمي؟ اضغط هنا

A Luminous, Fast Rising UV-Transient Discovered by ROTSE: a Tidal Disruption Event?

188   0   0.0 ( 0 )
 نشر من قبل Jozsef Vinko
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present follow-up observations of an optical transient (OT) discovered by ROTSE on Jan. 21, 2009. Photometric monitoring was carried out with ROTSE-IIIb in the optical and Swift in the UV up to +70 days after discovery. The light curve showed a fast rise time of ~10 days followed by a steep decline over the next 60 days, which was much faster than that implied by 56Ni - 56Co radioactive decay. The SDSS DR10 database contains a faint, red object at the position of the OT, which appears slightly extended. This and other lines of evidence suggest that the OT is of extragalactic origin, and this faint object is likely the host galaxy. A sequence of optical spectra obtained with the 9.2-m Hobby-Eberly Telescope (HET) between +8 and +45 days after discovery revealed a hot, blue continuum with no visible spectral features. A few weak features that appeared after +30 days probably originated from the underlying host. Fitting synthetic templates to the observed spectrum of the host galaxy revealed a redshift of z = 0.19. At this redshift the peak magnitude of the OT is close to -22.5, similar to the brightest super-luminous supernovae; however, the lack of identifiable spectral features makes the massive stellar death hypothesis less likely. A more plausible explanation appears to be the tidal disruption of a sun-like star by the central super-massive black hole. We argue that this transient likely belongs to a class of super-Eddington tidal disruption events.



قيم البحث

اقرأ أيضاً

105 - A. Rest 2018
For decades optical time-domain searches have been tuned to find ordinary supernovae, which rise and fall in brightness over a period of weeks. Recently, supernova searches have improved their cadences and a handful of fast-evolving luminous transien ts (FELTs) have been identified. FELTs have peak luminosities comparable to Type Ia supernovae, but rise to maximum in $<10$ days and fade from view in $<$month. Here we present the most extreme example of this class thus far, KSN2015K, with a rise time of only 2.2 days and a time above half-maximum ($t_{1/2}$) of only 6.8 days. Here we show that, unlike Type Ia supernovae, the light curve of KSN2015K was not powered by the decay of radioactive elements. We further argue that it is unlikely that it was powered by continuing energy deposition from a central remnant (a magnetar or black hole). Using numerical radiation hydrodynamical models, we show that the light curve of KSN2015K is well fit by a model where the supernova runs into external material presumably expelled in a pre-supernova mass loss episode. The rapid rise of KSN2015K therefore probes the venting of photons when a hypersonic shock wave breaks out of a dense extended medium.
We present the discovery of a luminous X-ray transient, serendipitously detected by Swifts X-ray Telescope (XRT) on 2020 February 5, located in the nucleus of the galaxy SDSS J143359.16+400636.0 at z=0.099 (luminosity distance $D_{rm L}=456$ Mpc). Th e transient was observed to reach a peak luminosity of $sim10^{44}$ erg s$^{-1}$ in the 0.3--10 keV X-ray band, which was $sim20$ times more than the peak optical/UV luminosity. Optical, UV, and X-ray lightcurves from the Zwicky Transient Facility (ZTF) and Swift show a decline in flux from the source consistent with $t^{-5/3}$, and observations with NuSTAR and Chandra show a soft X-ray spectrum with photon index $Gamma=2.9pm0.1$. The X-ray/UV properties are inconsistent with well known AGN properties and have more in common with known X-ray tidal disruption events (TDE), leading us to conclude that it was likely a TDE. The broadband spectral energy distribution (SED) can be described well by a disk blackbody model with an inner disk temperature of $7.3^{+0.3}_{-0.8}times10^{5}$ K, with a large fraction ($>40$%) of the disk emission up-scattered into the X-ray band. An optical spectrum taken with Keck/LRIS after the X-ray detection reveals LINER line ratios in the host galaxy, suggesting low-level accretion on to the supermassive black hole prior to the event, but no broad lines or other indications of a TDE were seen. The stellar velocity dispersion implies the mass of the supermassive black hole powering the event is log($M_{rm BH}$/$M_{odot}$)$=7.41pm0.41$, and we estimate that at peak the Eddington fraction of this event was $sim$50%. This likely TDE was not identified by wide-field optical surveys, nor optical spectroscopy, indicating that more events like this would be missed without wide-field UV or X-ray surveys.
We present the Pan-STARRS1 discovery of the long-lived and blue transient PS1-11af, which was also detected by GALEX with coordinated observations in the near-ultraviolet (NUV) band. PS1-11af is associated with the nucleus of an early-type galaxy at redshift z=0.4046 that exhibits no evidence for star formation or AGN activity. Four epochs of spectroscopy reveal a pair of transient broad absorption features in the UV on otherwise featureless spectra. Despite the superficial similarity of these features to P-Cygni absorptions of supernovae (SNe), we conclude that PS1-11af is not consistent with the properties of known types of SNe. Blackbody fits to the spectral energy distribution are inconsistent with the cooling, expanding ejecta of a SN, and the velocities of the absorption features are too high to represent material in homologous expansion near a SN photosphere. However, the constant blue colors and slow evolution of the luminosity are similar to previous optically-selected tidal disruption events (TDEs). The shape of the optical light curve is consistent with models for TDEs, but the minimum accreted mass necessary to power the observed luminosity is only ~0.002M_sun, which points to a partial disruption model. A full disruption model predicts higher bolometric luminosities, which would require most of the radiation to be emitted in a separate component at high energies where we lack observations. In addition, the observed temperature is lower than that predicted by pure accretion disk models for TDEs and requires reprocessing to a constant, lower temperature. Three deep non-detections in the radio with the VLA over the first two years after the event set strict limits on the production of any relativistic outflow comparable to Swift J1644+57, even if off-axis.
We present ground-based and Swift photometric and spectroscopic observations of the tidal disruption event (TDE) ASASSN-15oi, discovered at the center of 2MASX J20390918-3045201 ($dsimeq216$ Mpc) by the All-Sky Automated Survey for SuperNovae (ASAS-S N). The source peaked at a bolometric luminosity of $Lsimeq1.3times10^{44}$ ergs s$^{-1}$ and radiated a total energy of $Esimeq6.6times10^{50}$ ergs over the first $sim3.5$ months of observations. The early optical/UV emission of the source can be fit by a blackbody with temperature increasing from $Tsim2times10^4$ K to $Tsim4times10^4$ K while the luminosity declines from $Lsimeq1.3times10^{44}$ ergs s$^{-1}$ to $Lsimeq2.3times10^{43}$ ergs s$^{-1}$, requiring the photosphere to be shrinking rapidly. The optical/UV luminosity decline during this period is most consistent with an exponential decline, $Lpropto e^{-(t-t_0)/tau}$, with $tau simeq46.5$ days for $t_0simeq57241.6$ (MJD), while a power-law decline of $Lpropto (t-t_0)^{-alpha}$ with $t_0simeq57212.3$ and $alpha=1.62$ provides a moderately worse fit. ASASSN-15oi also exhibits roughly constant soft X-ray emission that is significantly weaker than the optical/UV emission. Spectra of the source show broad helium emission lines and strong blue continuum emission in early epochs, although these features fade rapidly and are not present $sim3$ months after discovery. The early spectroscopic features and color evolution of ASASSN-15oi are consistent with a TDE, but the rapid spectral evolution is unique among optically-selected TDEs.
We present ground-based and textit{Swift} observations of iPTF16fnl, a likely tidal disruption event (TDE) discovered by the intermediate Palomar Transient Factory (iPTF) survey at 66.6 Mpc. The lightcurve of the object peaked at absolute $M_g=-17.2$ mag. The maximum bolometric luminosity (from optical and UV) was $L_p~simeq~(1.0,pm,0.15) times 10^{43}$ erg/s, an order of magnitude fainter than any other optical TDE discovered so far. The luminosity in the first 60 days is consistent with an exponential decay, with $L propto e^{-(t-t_0)/tau}$, where $t_0$=~57631.0 (MJD) and $tausimeq 15$ days. The X-ray shows a marginal detection at $L_X=2.4^{1.9}_{-1.1}times 10^{39}$ erg/s (textit{Swift} X-ray Telescope). No radio counterpart was detected down to 3$sigma$, providing upper limits for monochromatic radio luminosity of $ u L_{ u} < 2.3times10^{36}$ erg/s and $ u L_{ u}<1.7times 10^{37}$ erg/s (VLA, 6.1 and 22 GHz). The blackbody temperature, obtained from combined textit{Swift} UV and optical photometry, shows a constant value of 19,000 K. The transient spectrum at peak is characterized by broad He II and H$alpha$ emission lines, with an FWHM of about 14,000 km/s and 10,000 km/s respectively. He I lines are also detected at $lambdalambda$ 5875 and 6678. The spectrum of the host is dominated by strong Balmer absorption lines, which are consistent with a post-starburst (E+A) galaxy with an age of $sim$650 Myr and solar metallicity. The characteristics of iPTF16fnl make it an outlier on both luminosity and decay timescales, as compared to other optically selected TDEs. The discovery of such a faint optical event suggests a higher rate of tidal disruptions, as low luminosity events may have gone unnoticed in previous searches.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا