ترغب بنشر مسار تعليمي؟ اضغط هنا

New homogeneous iron abundances of double-mode Cepheids from high-resolution echelle spectroscopy

183   0   0.0 ( 0 )
 نشر من قبل Jozsef Vinko
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Aims: We define the relationship between the double-mode pulsation of Cepheids and metallicity in a more accurate way, determine the empirical metallicities of double-mode Cepheids from homogeneous, high-resolution spectroscopic data, and study of the period-ratio -- metallicity dependence. Methods: The high S/N echelle spectra obtained with the FEROS spectrograph were analyzed using a self-developed IRAF script, and the iron abundances were determined by comparing with synthetic spectra assuming LTE. Results: Accurate [Fe/H] values of 17 galactic beat Cepheids were determined. All these stars have solar or slightly subsolar metallicity. Their period ratio P1/P0 shows strong correlation with their derived [Fe/H] values. The corresponding period ratio -- metallicity relation has been evaluated.



قيم البحث

اقرأ أيضاً

93 - E. Carretta 2004
This is the first of a series of papers devoted to derive the metallicity of old open clusters in order to study the time evolution of the chemical abundance gradient in the Galactic disk. We present detailed iron abundances from high resolution (R~4 0000) spectra of several red clump and bright giant stars in the open clusters IC 4651, NGC 2506 and NGC 6134. We observed 4 stars of NGC 2506, 3 stars of NGC 6134, and 5 stars of IC 4651 with the FEROS spectrograph at the ESO 1.5 m telescope; moreover, 3 other stars of NGC 6134 were observed with the UVES spectrograph on Kueyen (VLT UT2). After excluding the cool giants near the red giant branch tip (one in IC 4651 and one in NGC 2506), we found overall [Fe/H] values of -0.20 +/- 0.01, rms = 0.02 dex (2 stars) for NGC 2506, +0.15 +/- 0.03, rms = 0.07 dex (6 stars) for NGC 6134, and +0.11 +/- 0.01, rms = 0.01 dex (4 stars) for IC 4651. The metal abundances derived from line analysis for each star were extensively checked using spectrum synthesis of about 30 to 40 Fe I lines and 6 Fe II lines. Our spectroscopic temperatures provide reddening values in good agreement with literature data for these clusters, strengthening the reliability of the adopted temperature and metallicity scale. Also, gravities from the Fe equilibrium of ionization agree quite well with expectations based on cluster distance moduli and evolutionary masses.
325 - J. E. Colucci 2009
We report the first detailed chemical abundances for 5 globular clusters (GCs) in M31 from high-resolution (R ~ 25,000) spectroscopy of their integrated light. These GCs are the first in a larger set of clusters observed as part of an ongoing project to study the formation history of M31 and its globular cluster population. The data presented here were obtained with the HIRES echelle spectrograph on the Keck I telescope, and are analyzed using a new integrated light spectra analysis method that we have developed. In these clusters, we measure abundances for Mg, Al, Si, Ca, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Y, and Ba, ages >10 Gyrs, and a range in [Fe/H] of -0.9 to -2.2. As is typical of Milky Way GCs, we find these M31 GCs to be enhanced in the alpha-elements Ca, Si, and Ti relative to Fe. We also find [Mg/Fe] to be low relative to other [alpha/Fe], and [Al/Fe] to be enhanced in the integrated light abundances. These results imply that abundances of Mg, Al (and likely O, Na) recovered from integrated light do display the inter- and intra-cluster abundance variations seen in individual Milky Way GC stars, and that special care should be taken in the future in interpreting low or high resolution integrated light abundances of globular clusters that are based on Mg-dominated absorption features. Fe-peak and the neutron-capture elements Ba and Y also follow Milky Way abundance trends. We also present high-precision velocity dispersion measurements for all 5 M31 GCs, as well as independent constraints on the reddening toward the clusters from our analysis.
We present a photometric study of two new double-mode Cepheids, pulsating in the first and second overtones modes: V470 Cas and GSC 2901-00089. For the search of the double-mode variability, we used all available observations from the ROTSE-I/NSVS an d SuperWASP online public archives. Our multicolour CCD observations in the B, V and R bands in Johnsons system confirm the double periodicity of these variables. We study period variations of the two stars; variations of the first overtone periods were reliably detected. In addition, we consider the Petersen diagram for the Galactic 1O/2O Cepheids.
402 - Eugenio Carretta 2005
We present the analysis of high resolution spectra of six red giant stars in the old open cluster Collinder 261. Reddening values for individual stars, derived from the relation between colours and temperatures (deduced from our fully spectroscopic a nalysis) are consistent with previous determinations based on photometry. For this cluster we derive an iron abundance of [Fe/H] = -0.03 +/- 0.03. We also obtain the abundances of light metals (O, Na and Al), alpha-elements (Mg, Si, Ca, Ti), elements of the Fe-group (Sc, Cr, Mn, Co, Ni) and the neutron-capture element Ba. No intrinsic star-to-star scatter is present in any of these elements within our sample. We compare our findings with previous investigations on this cluster, discussing in detail differences in analysis methods and results.
The ratio of pulsation to radial velocity (the projection factor) is currently limiting the accuracy of the interferometric Baade-Wesselink method. This work aims at establishing a link between the line asymmetry evolution over the Cepheids pulsation cycles and their projection factor, with the final objective to improve the accuracy of the Baade-Wesselink method for distance determinations. We present HARPS high spectral resolution observations of nine galactic Cepheids having a good period sampling. We fit spectral line profiles by an asymmetric bi-Gaussian to derive radial velocity, Full-Width at Half-Maximum in the line (FWHM) and line asymmetry for all stars. We then extract correlations curves between radial velocity and asymmetry. A geometric model providing synthetic spectral lines, including limb-darkening, a constant FWHM (hereafter sigma_c) and the rotation velocity is used to interpret these correlations curves. For all stars, comparison between observations and modelling is satisfactory, and we were able to determine the projected rotation velocities and sigma_c for all stars. We also find a correlation between the rotation velocity (Vrot sin i) and the period of the star: Vrot sin i = (11.5 +- 0.9) log(P) + (19.8 +- 1.0) [km/s]. Moreover, we observe a systematic shift in observational asymmetry curves (noted gamma_O), related to the period of the star, which is not explained by our static model: gamma_O = (10.7+-0.1) log(P) + (9.7+-0.2) [in %] . For long-period Cepheids, in which velocity gradients, compression or shock waves seem to be large compared to short- or medium period Cepheids we observe indeed a greater systematic shift in asymmetry curves. (abridged)
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا