ترغب بنشر مسار تعليمي؟ اضغط هنا

A renormalizable coupling between the Higgs and a scalar unparticle operator O_U of non-integer dimension d_U < 2 gives rise, after electroweak symmetry breaking, to a mass gap in the unparticle continuum and a shift in the original Higgs mass, which can end up above or below the mass gap. We show that, besides the displaced Higgs state, a new isolated state can generically appear in the spectrum near or below the mass gap. Such state (which we call phantom Higgs) is a mixture of Higgs and unparticles and therefore has universally reduced couplings to fermions and gauge bosons. This phenomenon could cause the mass of the lightest Higgs state accessible to colliders to be much smaller than the mass expected from the SM Lagrangian.
A renormalizable coupling between the Higgs and a scalar unparticle operator O_U of non-integer dimension d_U<2 triggers, after electroweak symmetry breaking, an infrared divergent vacuum expectation value for O_U. Such IR divergence should be tamed before any phenomenological implications of the Higgs-unparticle interplay can be drawn. In this paper we present a novel mechanism to cure that IR divergence through (scale-invariant) unparticle self-interactions, which has properties qualitatively different from the mechanism considered previously. Besides finding a mass gap in the unparticle continuum we also find an unparticle pole reminiscent of a plasmon resonance. Such unparticle features could be explored experimentally through their mixing with the Higgs boson.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا