ترغب بنشر مسار تعليمي؟ اضغط هنا

The Higgs as a Portal to Plasmon-like Unparticle Excitations

188   0   0.0 ( 0 )
 نشر من قبل Jose Ramon Espinosa
 تاريخ النشر 2008
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

A renormalizable coupling between the Higgs and a scalar unparticle operator O_U of non-integer dimension d_U<2 triggers, after electroweak symmetry breaking, an infrared divergent vacuum expectation value for O_U. Such IR divergence should be tamed before any phenomenological implications of the Higgs-unparticle interplay can be drawn. In this paper we present a novel mechanism to cure that IR divergence through (scale-invariant) unparticle self-interactions, which has properties qualitatively different from the mechanism considered previously. Besides finding a mass gap in the unparticle continuum we also find an unparticle pole reminiscent of a plasmon resonance. Such unparticle features could be explored experimentally through their mixing with the Higgs boson.

قيم البحث

اقرأ أيضاً

Light scalar fields that couple to matter through the Higgs portal mediate long range fifth forces. We show how the mixing of a light scalar with the Higgs field can lead to this fifth force being screened around macroscopic objects. This behaviour c an only be seen by considering both scalar fields as dynamical, and is missed if the mixing between the Higgs field and the scalar field is not taken into account. We explain under which conditions the naive integrating out procedure fails, i.e. when the mass matrix of the Higgs-scalars system has a nearly vanishing mass eigenvalue. The resulting flat direction in field space can be lifted at the quadratic order in the presence of matter and the resulting fifth force mediated by the Higgs portal can be screened either when the gravitating objects are large enough or their surface Newton potential exceeds a threshold. Finally we discuss the implications of these results for nearly massless relaxion models.
112 - I. Brivio , M.B. Gavela , L. Merlo 2015
The Higgs portal to scalar Dark Matter is considered in the context of non-linearly realised electroweak symmetry breaking. We determine the dominant interactions of gauge bosons and the physical Higgs particle $h$ to a scalar singlet dark matter can didate. Phenomenological consequences are also studied in detail, including the possibility of distinguishing this scenario from the standard Higgs portal in which the electroweak symmetry breaking is linearly realised. Two features of significant impact are: i) the connection between the electroweak scale $v$ and the Higgs particle departs from the $(v+h)$ functional dependence, as the Higgs field is not necessarily an exact electroweak doublet; ii) the presence of specific couplings that arise at different order in the non-linear and in the linear expansions. These facts deeply affect the dark matter relic abundance, as well as the expected signals in direct and indirect searches and collider phenomenology, where Dark Matter production rates are enhanced with respect to the standard portal.
Higgs portal interactions provide a simple mechanism for addressing two open problems in cosmology: dark matter and the baryon asymmetry. In the latter instance, Higgs portal interactions may contain the ingredients for a strong first order electrowe ak phase transition as well as new CP-violating interactions as needed for electroweak baryogenesis. These interactions may also allow for a viable dark matter candidate. We survey the opportunities for probing the Higgs portal as it relates to these questions in cosmology at the LHC and possible future colliders.
We study the impact on leptogenesis of Higgs portal couplings to a new scalar singlet. These couplings open up additional $CP$-violating decay channels for the higher mass singlet neutrinos $N_2$ and $N_3$. We analyze the simplest case of two-level $ N_1-N_2$ leptogenesis, including significant mass hierarchies, in which the $CP$ asymmetry is generated in part by singlet-mediated decays of $N_2$. For these models, provided the lightest singlet neutrino $N_1$ is sufficiently weakly coupled to avoid excessive washout, its mass scale is not directly constrained by the Davidson-Ibarra bound.
We perform a comprehensive study of collider aspects of a Higgs portal scenario that is protected by an unbroken ${mathbb{Z}}_2$ symmetry. If the mass of the Higgs portal scalar is larger than half the Higgs mass, this scenario becomes very difficult to detect. We provide a detailed investigation of the models parameter space based on analyses of the direct collider sensitivity at the LHC as well as at future lepton and hadron collider concepts and analyse the importance of these searches for this scenario in the context of expected precision Higgs and electroweak measurements. In particular we also consider the associated electroweak oblique corrections that we obtain in a first dedicated two-loop calculation for comparisons with the potential of, e.g., GigaZ. The currently available collider projections corroborate an FCC-hh 100 TeV as a very sensitive tool to search for such a weakly-coupled Higgs sector extension, driven by small statistical uncertainties over a large range of energy coverage. Crucially, however, this requires good theoretical control. Alternatively, Higgs signal-strength measurements at an optimal FCC-ee sensitivity level could yield comparable constraints.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا