ترغب بنشر مسار تعليمي؟ اضغط هنا

The electronic structure of BaFe2As2 doped with Co, Ni, and Cu has been studied by a variety of experimental and theoretical methods, but a clear picture of the dopant 3d states has not yet emerged. Herein we provide experimental evidence of the dist ribution of Co, Ni, and Cu 3d states in the valence band. We conclude that the Co and Ni 3d states provide additional free carriers to the Fermi level, while the Cu 3d states are found at the bottom of the valence band in a localized 3d10 shell. These findings help shed light on why superconductivity can occur in BaFe2As2 doped with Co and Ni but not Cu.
Natural 12CaO$cdot$7Al$_2$O$_3$ (C12A7) is a wide bandgap insulator, but conductivity can be realized by introducing oxygen deficiency. Currently, there are two competing models explaining conductivity in oxygen-deficient C12A7, one involving the ele ctron transfer via a cage conduction band inside the nominal band gap, the other involving electron hopping along framework lattice sites. To help resolve this debate, we probe insulating and conducting C12A7 with X-ray emission, X-ray absorption, and X-ray photoemission spectroscopy, which provide a full picture of both the valence and conduction band edges in these materials. These measurements suggest the existence of a narrow conduction band between the main conduction and valence bands common in both conducting and insulating C12A7 and support the theory that free electrons in oxygen-deficient C12A7 occupy the low-energy states of this narrow band. Our measurements are corroborated with density functional theory calculations.
35 - John Mcleod 2010
We determine the maximal hyperbolic reflection groups associated to the quadratic forms $-3x_0^2 + x_1^2 + ... + x_n^2$, $n ge 2$, and present the Coxeter schemes of their fundamental polyhedra. These groups exist in dimensions up to 13, and a proof is given that in higher dimensions these quadratic forms are not reflective.
We investigate the crystallization of amorphous arsenic-selenium alloys with 0%, 0.5%, 2%, 6%, 10%, and 19% arsenic by atomic concentration using synchrotron X-ray absorption spectroscopy. We identify crystalline order using the extended X-ray absorp tion fine structure (EXAFS) spectra and correlate this order to changes in features of the X-ray absorption near edge structure (XANES) spectra. We find supporting evidence that the structure of amorphous selenium is composed of disordered helical chains, and is therefore closer to the trigonal crystalline phase than the monoclinic crystalline phase.
We have performed a systematic study of the electronic structures of BiMeO3 (Me = Sc, Cr, Mn, Fe, Co, Ni) series by soft X-ray emission (XES) and absorption (XAS) spectroscopy. The band gap values were estimated for all compounds in the series. For B iFeO3 a band gap of ~0.9 eV was obtained from the alignment of the O Ka XES and O 1s XAS. The O 1s XAS spectrum of BiNiO3 indicates that the formation of holes is due to a Ni2+ valency rather than a Ni3+ valency. We have found that the O Ka XES and O 1s XAS of BiMeO3 probing partially occupied and vacant O 2p states, respectively, are in agreement with the O 2p densities of states obtained from spin-polarized band structure calculations. The O Ka XES spectra show the same degree of Bi 6s--O 2p hybridization for all compounds in the series. We argue herein that the stereochemical activity of Bi 6s lone pairs must be supplemented with inversion symmetry breaking to allow electric polarization. For BiMnO3 and BiFeO3, two cases of multiferroic materials in this series, the former breaks the inversion symmetry due to the antiferromagnetic order induced by particular orbital ordering in the highly distorted perovskite structure and the latter has rhombohedral crystal structure without inversion symmetry.
The electronic structure in alkaline earth AeO (Ae = Be, Mg, Ca, Sr, Ba) and post-transition metal oxides MeO (Me = Zn, Cd, Hg) is probed with oxygen K-edge X-ray absorption and emission spectroscopy. The experimental data is compared with density fu nctional theory electronic structure calculations. We use our experimental spectra of the oxygen K-edge to estimate the bandgaps of these materials, and compare our results to the range of values available in the literature.
Results of resonant inelastic X-ray scattering (RIXS) measurements at Fe L-edges and electronic structure calculations of LiFeAs and NaFeAs are presented. Both experiment and theory show that in the vicinity of the Fermi energy, the density of states is dominated by contributions from Fe 3d-states. The comparison of Fe L2,3 non-resonant and resonant (excited at L2-threshold) X-ray emission spectra with spectra of LaOFeAs and CaFe2As2 show a great similarity in energy and I(L2)/I(L3) intensity ratio. The I(L2)/I(L3) intensity ratio of all FeAs-based superconductors is found to be more similar to metallic Fe than to correlated FeO. Basing on these measurements we conclude that iron-based superconductors are weakly or moderately correlated systems.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا