ترغب بنشر مسار تعليمي؟ اضغط هنا

The electronic structure of LiFeAs and NaFeAs probed by resonant inelastic x-ray scattering spectra

101   0   0.0 ( 0 )
 نشر من قبل John McLeod
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Results of resonant inelastic X-ray scattering (RIXS) measurements at Fe L-edges and electronic structure calculations of LiFeAs and NaFeAs are presented. Both experiment and theory show that in the vicinity of the Fermi energy, the density of states is dominated by contributions from Fe 3d-states. The comparison of Fe L2,3 non-resonant and resonant (excited at L2-threshold) X-ray emission spectra with spectra of LaOFeAs and CaFe2As2 show a great similarity in energy and I(L2)/I(L3) intensity ratio. The I(L2)/I(L3) intensity ratio of all FeAs-based superconductors is found to be more similar to metallic Fe than to correlated FeO. Basing on these measurements we conclude that iron-based superconductors are weakly or moderately correlated systems.



قيم البحث

اقرأ أيضاً

The parent compounds of iron-based superconductors are magnetically-ordered bad metals, with superconductivity appearing near a putative magnetic quantum critical point. The presence of both Hubbard repulsion and Hunds coupling leads to rich physics in these multiorbital systems, and motivated descriptions of magnetism in terms of itinerant electrons or localized spins. The NaFe$_{1-x}$Cu$_x$As series consists of magnetically-ordered bad metal ($x=0$), superconducting ($xapprox0.02$) and magnetically-ordered semiconducing/insulating ($xapprox0.5$) phases, providing a platform to investigate the connection between superconductivity, magnetism and electronic correlations. Here we use X-ray absorption spectroscopy and resonant inelastic X-ray scattering to study the valence state of Fe and spin dynamics in two NaFe$_{1-x}$Cu$_x$As compounds ($x=0$ and 0.47). We find that magnetism in both compounds arises from Fe$^{2+}$ atoms, and exhibits underdamped dispersive spin waves in their respective ordered states. The dispersion of spin excitations in NaFe$_{0.53}$Cu$_{0.47}$As is consistent with being quasi-one-dimensional. Compared to NaFeAs, the band top of spin waves in NaFe$_{0.53}$Cu$_{0.47}$As is slightly softened with significantly more spectral weight of the spin excitations. Our results indicate the spin dynamics in NaFe$_{0.53}$Cu$_{0.47}$As arise from localized magnetic moments and suggest the iron-based superconductors are proximate to a correlated insulating state with localized iron moments.
We used resonant inelastic x-ray scattering (RIXS) with and without analysis of the scattered photon polarization, to study dispersive spin excitations in the high temperature superconductor YBa2Cu3O6+x over a wide range of doping levels (0.1 < x < 1 ). The excitation profiles were carefully monitored as the incident photon energy was detuned from the resonant condition, and the spin excitation energy was found to be independent of detuning for all x. These findings demonstrate that the largest fraction of the spin-flip RIXS profiles in doped cuprates arises from magnetic collective modes, rather than from incoherent particle-hole excitations as recently suggested theoretically [Benjamin et al. Phys. Rev. Lett. 112, 247002(2014)]. Implications for the theoretical description of the electron system in the cuprates are discussed.
477 - M. Minola , Y. Lu , Y. Y. Peng 2017
Spin excitations in the overdoped high temperature superconductors Tl$_2$Ba$_2$CuO$_{6+delta}$ and (Bi,Pb)$_2$(Sr,La)$_{2}$CuO$_{6+delta}$ were investigated by resonant inelastic x-ray scattering (RIXS) as functions of doping and detuning of the inco ming photon energy above the Cu-$L_3$ absorption peak. The RIXS spectra at optimal doping are dominated by a paramagnon feature with peak energy independent of photon energy, similar to prior results on underdoped cuprates. Beyond optimal doping, the RIXS data indicate a sharp crossover to a regime with a strong contribution from incoherent particle/hole excitations whose maximum shows a fluorescence-like shift upon detuning. The spectra of both compound families are closely similar, and their salient features are reproduced by exact-diagonalization calculations of the single-band Hubbard model on a finite cluster. The results are discussed in the light of recent transport experiments indicating a quantum phase transition near optimal doping.
The discovery of infinite-layer nickelate superconductors has spurred enormous interest. While the Ni$^{1+}$ cations possess nominally the same 3d$^9$ configuration as Cu$^{2+}$ in high-$T_C$ cuprates, the electronic structure consistencies and varia nces remain elusive, due to the lack of direct experimental probes. Here, we present a soft x-ray photoemission spectroscopy study on both parent and doped infinite-layer Pr-nickelate thin films with a doped perovskite reference. By identifying the Ni character with resonant photoemission and comparison to density function theory + U calculations, we estimate U ~ 5 eV, smaller than the charge transfer energy $Delta$ ~ 8 eV, in contrast to the cuprates being charge transfer insulators. Near the Fermi level (EF), we observe a signature of rare-earth spectral intensity in the parent compound, which is depleted upon doping. The parent compound, self-doped from rare-earth electrons, exhibits higher density of states at EF but manifests weaker superconducting instability than the Sr-doped case, demonstrating a complex interplay between the strongly-correlated Ni 3d and the weakly-interacting rare-earth 5d states in these oxide-intermetallic nickelates.
Nematicity is ubiquitous in electronic phases of high-$T_c$ superconductors, particularly in the Fe-based systems. We used inelastic x-ray scattering to extract the temperature-dependent nematic correlation length $xi$ from the anomalous softening of acoustic phonon modes in FeSe, underdoped Ba(Fe$_{0.97}$Co$_{0.03}$)$_2$As$_2$ and optimally doped Ba(Fe$_{0.94}$Co$_{0.06}$)$_2$As$_2$. In all cases, we find that $xi$ is well described by a power law $(T-T_0)^{-1/2}$ extending over a wide temperature range. We attributed this mean-field behavior and the extended fluctuation regime to a sizable nemato-elastic coupling, which may be detrimental to superconductivity.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا