ﻻ يوجد ملخص باللغة العربية
Results of resonant inelastic X-ray scattering (RIXS) measurements at Fe L-edges and electronic structure calculations of LiFeAs and NaFeAs are presented. Both experiment and theory show that in the vicinity of the Fermi energy, the density of states is dominated by contributions from Fe 3d-states. The comparison of Fe L2,3 non-resonant and resonant (excited at L2-threshold) X-ray emission spectra with spectra of LaOFeAs and CaFe2As2 show a great similarity in energy and I(L2)/I(L3) intensity ratio. The I(L2)/I(L3) intensity ratio of all FeAs-based superconductors is found to be more similar to metallic Fe than to correlated FeO. Basing on these measurements we conclude that iron-based superconductors are weakly or moderately correlated systems.
The parent compounds of iron-based superconductors are magnetically-ordered bad metals, with superconductivity appearing near a putative magnetic quantum critical point. The presence of both Hubbard repulsion and Hunds coupling leads to rich physics
We used resonant inelastic x-ray scattering (RIXS) with and without analysis of the scattered photon polarization, to study dispersive spin excitations in the high temperature superconductor YBa2Cu3O6+x over a wide range of doping levels (0.1 < x < 1
Spin excitations in the overdoped high temperature superconductors Tl$_2$Ba$_2$CuO$_{6+delta}$ and (Bi,Pb)$_2$(Sr,La)$_{2}$CuO$_{6+delta}$ were investigated by resonant inelastic x-ray scattering (RIXS) as functions of doping and detuning of the inco
The discovery of infinite-layer nickelate superconductors has spurred enormous interest. While the Ni$^{1+}$ cations possess nominally the same 3d$^9$ configuration as Cu$^{2+}$ in high-$T_C$ cuprates, the electronic structure consistencies and varia
Nematicity is ubiquitous in electronic phases of high-$T_c$ superconductors, particularly in the Fe-based systems. We used inelastic x-ray scattering to extract the temperature-dependent nematic correlation length $xi$ from the anomalous softening of