ترغب بنشر مسار تعليمي؟ اضغط هنا

138 - Johannes M. Henn 2014
Over the last year significant progress was made in the understanding of the computation of Feynman integrals using differential equations. These lectures give a review of these developments, while not assuming any prior knowledge of the subject. Aft er an introduction to differential equations for Feynman integrals, we point out how they can be simplified using algorithms available in the mathematical literature. We discuss how this is related to a recent conjecture for a canonical form of the equations. We also discuss a complementary approach that allows based on properties of the space-time loop integrands, and explain how the ideas of leading singularities and d-log representations can be used to find an optimal basis for the differential equations. Finally, as an application of the differential equations method we show how single-scale integrals can be bootstrapped using the Drinfeld associator of a differential equation.
We present the full analytic result for the three-loop angle-dependent cusp anomalous dimension in QCD. With this result, infrared divergences of planar scattering processes with massive particles can be predicted to that order. Moreover, we define a closely related quantity in terms of an effective coupling defined by the light-like cusp anomalous dimension. We find evidence that this quantity is universal for any gauge theory, and use this observation to predict the non-planar $n_{f}$-dependent terms of the four-loop cusp anomalous dimension.
In this talk we present the result for the $n_f$ dependent piece of the three-loop cusp anomalous dimension in QCD. Remarkably, it is parametrized by the same simple functions appearing in analogous anomalous dimensions in ${mathcal N}=4$ SYM at one and two loops. We also compute all required master integrals using a recently proposed refinement of the differential equation method. The analytic results are expressed in terms of harmonic polylogarithms of uniform weight.
65 - Johannes M. Henn 2014
I will present a new method for thinking about and for computing loop integrals based on differential equations. All required information is obtained by algebraic means and is encoded in a small set of simple quantities that I will describe. I will p resent various applications, including results for all planar master integrals that are needed for the computation of NNLO QCD corrections to the production of two off-shell vector bosons in hadron collisions.
In this paper we develop further and refine the method of differential equations for computing Feynman integrals. In particular, we show that an additional iterative structure emerges for finite loop integrals. As a concrete non-trivial example we st udy planar master integrals of light-by-light scattering to three loops, and derive analytic results for all values of the Mandelstam variables $s$ and $t$ and the mass $m$. We start with a recent proposal for defining a basis of loop integrals having uniform transcendental weight properties and use this approach to compute all planar two-loop master integrals in dimensional regularization. We then show how this approach can be further simplified when computing finite loop integrals. This allows us to discuss precisely the subset of integrals that are relevant to the problem. We find that this leads to a block triangular structure of the differential equations, where the blocks correspond to integrals of different weight. We explain how this block triangular form is found in an algorithmic way. Another advantage of working in four dimensions is that integrals of different loop orders are interconnected and can be seamlessly discussed within the same formalism. We use this method to compute all finite master integrals needed up to three loops. Finally, we remark that all integrals have simple Mandelstam representations.
We describe the calculation of all planar master integrals that are needed for the computation of NNLO QCD corrections to the production of two off-shell vector bosons in hadron collisions. The most complicated representatives of integrals in this cl ass are the two-loop four-point functions where two external lines are on the light-cone and two other external lines have different invariant masses. We compute these and other relevant integrals analytically using differential equations in external kinematic variables and express our results in terms of Goncharov polylogarithms. The case of two equal off-shellnesses, recently considered in Ref. [1], appears as a particular case of our general solution.
We provide an analytic formula for the (rescaled) one-loop scalar hexagon integral $tildePhi_6$ with all external legs massless, in terms of classical polylogarithms. We show that this integral is closely connected to two integrals appearing in one- and two-loop amplitudes in planar $mathcal{N}=4$ super-Yang-Mills theory, $Omega^{(1)}$ and $Omega^{(2)}$. The derivative of $Omega^{(2)}$ with respect to one of the conformal invariants yields $tildePhi_6$, while another first-order differential operator applied to $tildePhi_6$ yields $Omega^{(1)}$. We also introduce some kinematic variables that rationalize the arguments of the polylogarithms, making it easy to verify the latter differential equation. We also give a further example of a six-dimensional integral relevant for amplitudes in $mathcal{N}=4$ super-Yang-Mills.
We present a novel type of differential equations for on-shell loop integrals. The equations are second-order and importantly, they reduce the loop level by one, so that they can be solved iteratively in the loop order. We present several infinite se ries of integrals satisfying such iterative differential equations. The differential operators we use are best written using momentum twistor space. The use of the latter was advocated in recent papers discussing loop integrals in N=4 super Yang-Mills. One of our motivations is to provide a tool for deriving analytical results for scattering amplitudes in this theory. We show that the integrals needed for planar MHV amplitudes up to two loops can be thought of as deriving from a single master topology. The master integral satisfies our differential equations, and so do most of the reduced integrals. A consequence of the differential equations is that the integrals we discuss are not arbitrarily complicated transcendental functions. For two specific two-loop integrals we give the full analytic solution. The simplicity of the integrals appearing in the scattering amplitudes in planar N=4 super Yang-Mills is strongly suggestive of a relation to the conjectured underlying integrability of the theory. We expect these differential equations to be relevant for all planar MHV and non-MHV amplitudes. We also discuss possible extensions of our method to more general classes of integrals.
We extend and develop a method for perturbative calculations of anomalous dimensions and mixing matrices of leading twist conformal primary operators in conformal field theories. Such operators lie on the unitarity bound and hence are conserved (irre ducible) in the free theory. The technique relies on the known pattern of breaking of the irreducibility conditions in the interacting theory. We relate the divergence of the conformal operators via the field equations to their descendants involving an extra field and accompanied by an extra power of the coupling constant. The ratio of the two-point functions of descendants and of their primaries determines the anomalous dimension, allowing us to gain an order of perturbation theory. We demonstrate the efficiency of the formalism on the lowest-order analysis of anomalous dimensions and mixing matrices which is required for two-loop calculations of the former. We compare these results to another method based on anomalous conformal Ward identities and constraints from the conformal algebra. It also permits to gain a perturbative order in computations of mixing matrices. We show the complete equivalence of both approaches.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا