ﻻ يوجد ملخص باللغة العربية
In this paper we develop further and refine the method of differential equations for computing Feynman integrals. In particular, we show that an additional iterative structure emerges for finite loop integrals. As a concrete non-trivial example we study planar master integrals of light-by-light scattering to three loops, and derive analytic results for all values of the Mandelstam variables $s$ and $t$ and the mass $m$. We start with a recent proposal for defining a basis of loop integrals having uniform transcendental weight properties and use this approach to compute all planar two-loop master integrals in dimensional regularization. We then show how this approach can be further simplified when computing finite loop integrals. This allows us to discuss precisely the subset of integrals that are relevant to the problem. We find that this leads to a block triangular structure of the differential equations, where the blocks correspond to integrals of different weight. We explain how this block triangular form is found in an algorithmic way. Another advantage of working in four dimensions is that integrals of different loop orders are interconnected and can be seamlessly discussed within the same formalism. We use this method to compute all finite master integrals needed up to three loops. Finally, we remark that all integrals have simple Mandelstam representations.
For a fixed Feynman graph one can consider Feynman integrals with all possible powers of propagators and try to reduce them, by linear relations, to a finite subset of integrals, the so-called master integrals. Up to now, there are numerous examples
We reveal a new mechanism of conformal symmetry breaking at Born level. It occurs in generalized form factors with several local operators and an on-shell state of massless particles. The effect is due to hidden singularities on collinear configurati
We present a novel type of differential equations for on-shell loop integrals. The equations are second-order and importantly, they reduce the loop level by one, so that they can be solved iteratively in the loop order. We present several infinite se
We provide a sufficient condition for avoiding squared propagators in the intermediate stages of setting up differential equations for loop integrals. This condition is satisfied in a large class of two- and three-loop diagrams. For these diagrams, t
In this manuscript, which is to appear in the proceedings of the conference MathemAmplitude 2019 in Padova, Italy, we provide an overview of the module intersection method for the the integration-by-parts (IBP) reduction of multi-loop Feynman integra