ﻻ يوجد ملخص باللغة العربية
We provide an analytic formula for the (rescaled) one-loop scalar hexagon integral $tildePhi_6$ with all external legs massless, in terms of classical polylogarithms. We show that this integral is closely connected to two integrals appearing in one- and two-loop amplitudes in planar $mathcal{N}=4$ super-Yang-Mills theory, $Omega^{(1)}$ and $Omega^{(2)}$. The derivative of $Omega^{(2)}$ with respect to one of the conformal invariants yields $tildePhi_6$, while another first-order differential operator applied to $tildePhi_6$ yields $Omega^{(1)}$. We also introduce some kinematic variables that rationalize the arguments of the polylogarithms, making it easy to verify the latter differential equation. We also give a further example of a six-dimensional integral relevant for amplitudes in $mathcal{N}=4$ super-Yang-Mills.
Using four-dimensional unitarity and MHV-rules we calculate the one-loop MHV amplitudes with all external particles in the adjoint representation for N=2 supersymmetric QCD with N_f fundamental flavours. We start by considering such amplitudes in the
We compute the six-dimensional hexagon integral with three non-adjacent external masses analytically. After a simple rescaling, it is given by a function of six dual conformally invariant cross-ratios. The result can be expressed as a sum of 24 terms
We introduce a novel way to perform high-order computations in multi-Regge-kinematics in planar N=4 supersymmetric Yang-Mills theory and generalize the existing factorization into building blocks at two loops to all loop orders. Afterwards, we will e
In this paper we present the all-loop conjecture for integrands of Wilson line form factors, also known as reggeon amplitudes, in N=4 SYM. In particular we present a new gluing operation in momentum twistor space used to obtain reggeon tree-level amp
In this paper we consider tree-level gauge invariant off-shell amplitudes (Wilson line form factors) in $mathcal{N}=4$ SYM with arbitrary number of off-shell gluons or equivalently Wilson line operator insertions. We make a conjecture for the Grassma