ترغب بنشر مسار تعليمي؟ اضغط هنا

We report a convergent surface polymerization reaction scheme on Au(111), based on a triple aldol condensation, yielding a carbon-rich, covalent nanoporous two-dimensional network. The reaction is not self-poisoning and proceeds up to a full surface coverage. The deposited precursor molecules 1,3,5-tri(4-acetylphenyl) first form supramolecular assemblies that are converted to the porous covalent network upon heating. The formation and structure of the network and of the intermediate steps are studied with scanning tunneling microscopy, Raman spectroscopy and density functional theory.
59 - Amina Kimouche 2013
The intercalation of an oxide barrier between graphene and its metallic substrate for chem- ical vapor deposition is a contamination-free alternative to the transfer of graphene to dielectric supports, usually needed for the realization of electronic devices. Low-cost pro- cesses, especially at atmospheric pressure, are desirable but whether they are achievable remains an open question. Combining complementary microscopic analysis, providing structural, electronic, vibrational, and chemical information, we demonstrate the spontaneous reactive intercalation of 1.5 nm-thick oxide ribbons between graphene and an iridium substrate, at atmospheric pressure and room temperature. We discover that oxygen-containing molecules needed for forming the ribbons are supplied through the graphene wrinkles, which act as tunnels for the efficient diffusion of molecules entering their free end. The intercalated oxide ribbons are found to modify the graphene-support interaction, leading to the formation of quasi-free-standing high quality graphene whose charge density is modulated in few 10-100 nm-wide ribbons by a few 10^12 cm-2, where the inelastic optical response is changed, due to a softening of vibrational modes - red-shifts of Raman G and 2D bands by 6 and 10 cm-1, respectively.
We investigate the fine structure of graphene on iridium, which is a model for graphene weakly interacting with a transition metal substrate. Even the highest quality epitaxial graphene displays tiny imperfections, i.e. small biaxial strains, ca. 0.3 %, rotations, ca. 0.5^{circ}, and shears over distances of ca. 100 nm, and is found incommensurate, as revealed by X-ray diffraction and scanning tunneling microscopy. These structural variations are mostly induced by the increase of the lattice parameter mismatch when cooling down the sample from the graphene preparation temperature to the measurement temperature. Although graphene weakly interacts with iridium, its thermal expansion is found positive, contrary to free-standing graphene. The structure of graphene and its variations are very sensitive to the preparation conditions. All these effects are consistent with initial growth and subsequent pining of graphene at steps.
123 - Chi Vo-Van 2011
The structure and magnetic properties of Co clusters, comprising from 26 to 2700 atoms, self-organized or not on the graphene/Ir(111) moire, were studied in situ with the help of scanning tunneling microscopy and X-ray magnetic circular dichroism. Su rprisingly the small clusters have almost no magnetic anisotropy. We find indication for a magnetic coupling between the clusters. Experiments have to be performed carefully so as to avoid cluster damage by the soft X-rays.
100 - Chi Vo-Van 2011
Uniform single layer graphene was grown on single-crystal Ir films a few nanometers thick which were prepared by pulsed laser deposition on sapphire wafers. These graphene layers have a single crystallographic orientation and a very low density of de fects, as shown by diffraction, scanning tunnelling microscopy, and Raman spectroscopy. Their structural quality is as high as that of graphene produced on Ir bulk single crystals, i.e. much higher than on metal thin films used so far.
The growth and annealing behavior of strongly twinned homoepitaxial films on Ir(111) has been investigated by scanning tunneling microscopy, low energy electron diffraction and surface X-ray diffraction. In situ surface X-ray diffraction during and a fter film growth turned out to be an efficient tool for the determination of twin fractions in multilayer films and to uncover the nature of side twin boundaries. The annealing of the twin structures is shown to take place in a two step process, reducing first the length of the boundaries between differently stacked areas and only then the twins themselves. A model for the structure of the side twin boundaries is proposed which is consistent with both the scanning tunneling microscopy and surface X-ray diffraction data.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا