ترغب بنشر مسار تعليمي؟ اضغط هنا

Twins and their boundaries during homoepitaxy on Ir(111)

93   0   0.0 ( 0 )
 نشر من قبل Johann Coraux
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The growth and annealing behavior of strongly twinned homoepitaxial films on Ir(111) has been investigated by scanning tunneling microscopy, low energy electron diffraction and surface X-ray diffraction. In situ surface X-ray diffraction during and after film growth turned out to be an efficient tool for the determination of twin fractions in multilayer films and to uncover the nature of side twin boundaries. The annealing of the twin structures is shown to take place in a two step process, reducing first the length of the boundaries between differently stacked areas and only then the twins themselves. A model for the structure of the side twin boundaries is proposed which is consistent with both the scanning tunneling microscopy and surface X-ray diffraction data.



قيم البحث

اقرأ أيضاً

Epitaxial graphene on Ir(111) prepared in excellent structural quality is investigated by angle-resolved photoelectron spectroscopy. It clearly displays a Dirac cone with the Dirac point shifted only slightly above the Fermi level. The moire resultin g from the overlaid graphene and Ir(111) surface lattices imposes a superperiodic potential giving rise to Dirac cone replicas and the opening of minigaps in the band structure.
Using scanning tunneling microscopy (STM), we investigate oxide-induced growth pits in Si thin films deposited by molecular beam epitaxy. In the transition temperature range from 2D adatom islanding to step-flow growth, systematic controlled air leak s into the growth chamber induce pits in the growth surface. We show that pits are also correlated with oxygen-contaminated flux from Si sublimation sources. From a thermodynamic standpoint, multilayer growth pits are unexpected in relaxed homoepitaxial growth, whereas oxidation is a known cause for step pinning, roughening, and faceting on elemental surfaces, both with and without growth flux. Not surprisingly, pits are thermodynamically metastable and heal by annealing to recover a smooth periodic step arrangement. STM reveals new details about the pits atomistic origins and growth dynamics. We give a model for heterogeneous nucleation of pits by preferential adsorption of {AA}-sized oxide nuclei at intrinsic growth antiphase boundaries, and subsequent step pinning and bunching around the nuclei.
We present a detailed theoretical investigation on the magnetic properties of small single-layered Fe, Co and Ni clusters deposited on Ir(111), Pt(111) and Au(111). For this a fully relativistic {em ab-initio} scheme based on density functional theor y has been used. We analyse the element, size and geometry specific variations of the atomic magnetic moments and their mutual exchange interactions as well as the magnetic anisotropy energy in these systems. Our results show that the atomic spin magnetic moments in the Fe and Co clusters decrease almost linearly with coordination on all three substrates, while the corresponding orbital magnetic moments appear to be much more sensitive to the local atomic environment. The isotropic exchange interaction among the cluster atoms is always very strong for Fe and Co exceeding the values for bulk bcc Fe and hcp Co, whereas the anisotropic Dzyaloshinski-Moriya interaction is in general one or two orders of magnitude smaller when compared to the isotropic one. For the magnetic properties of Ni clusters the magnetic properties can show quite a different behaviour and we find in this case a strong tendency towards noncollinear magnetism.
We investigate the interplay between the structural reconstruction and the magnetic properties of Fe doublelayers on Ir (111)-substrate using first-principles calculations based on density functional theory and mapping of the total energies on an ato mistic spin model. We show that, if a second Fe monolayer is deposited on Fe/Ir (111), the stacking may change from hexagonal close-packed to bcc (110)-like accompanied by a reduction of symmetry from trigonal to centered rectangular. Although the bcc-like surface has a lower coordination, we find that this is the structural ground state. This reconstruction has a major impact on the magnetic structure. We investigate in detail the changes in the magnetic exchange interaction, the magnetocrystalline anisotropy, and the Dzyaloshinskii Moriya interaction depending on the stacking sequence of the Fe double-layer. Based on our findings, we suggest a new technique to engineer Dzyaloshinskii Moriya interactions in multilayer systems employing symmetry considerations. The resulting anisotropic Dzyaloshinskii-Moriya interactions may stabilize higher-order skyrmions or antiskyrmions.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا