ترغب بنشر مسار تعليمي؟ اضغط هنا

Dense, star-forming gas is believed to form at the stagnation points of large-scale ISM flows, but observational examples of this process in action are rare. We here present a giant molecular cloud (GMC) sandwiched between two colliding Milky Way sup ershells, which we argue shows strong evidence of having formed from material accumulated at the collision zone. Combining 12CO, 13CO and C18O(J=1-0) data with new high-resolution, 3D hydrodynamical simulations of colliding supershells, we discuss the origin and nature of the GMC (G288.5+1.5), favoring a scenario in which the cloud was partially seeded by pre-existing denser material, but assembled into its current form by the action of the shells. This assembly includes the production of some new molecular gas. The GMC is well interpreted as non-self-gravitating, despite its high mass (MH2 ~ 1.7 x 10^5 Msol), and is likely pressure confined by the colliding flows, implying that self-gravity was not a necessary ingredient for its formation. Much of the molecular gas is relatively diffuse, and the cloud as a whole shows little evidence of star formation activity, supporting a scenario in which it is young and recently formed. Drip-like formations along its lower edge may be explained by fluid dynamical instabilities in the cooled gas.
SPLASH (the Southern Parkes Large-Area Survey in Hydroxyl) is a sensitive, unbiased and fully-sampled survey of the Southern Galactic Plane and Galactic Centre in all four ground-state transitions of the hydroxyl (OH) radical. The survey provides a d eep census of 1612-, 1665-, 1667- and 1720-MHz OH absorption and emission from the Galactic ISM, and is also an unbiased search for maser sources in these transitions. We present here first results from the SPLASH pilot region, which covers Galactic longitudes 334 to 344 degrees and latitudes of -2 to +2 degrees. Diffuse OH is widely detected in all four transitions, with optical depths that are always small (averaged over the Parkes beam), and with departures from LTE common even in the 1665- and 1667-MHz main lines. To a 3$sigma$ sensitivity of 30 mK, we find no evidence of OH envelopes extending beyond the CO-bright regions of molecular cloud complexes, and conclude that the similarity of the OH excitation temperature and the level of the continuum background is at least partly responsible for this. We detect masers and maser candidates in all four transitions, approximately 50 per cent of which are new detections. This implies that SPLASH will produce a substantial increase in the known population of ground-state OH masers in the Southern Galactic Plane.
138 - J. R. Dawson 2013
The accumulation, compression and cooling of the ambient interstellar medium (ISM) in large-scale flows powered by OB cluster feedback can drive the production of dense molecular clouds. We review the current state of the field, with a strong focus o n the explicit modelling and observation of the neutral interstellar medium. Magneto-hydrodynamic simulations of colliding ISM flows provide a strong theoretical framework in which to view feedback-driven cloud formation, as do models of the gravitational fragmentation of expanding shells. Rapid theoretical developments are accompanied by growing body of observational work that provides good evidence for the formation of molecular gas via stellar feedback - both in the Milky Way and the Large Magellanic Cloud. The importance of stellar feedback compared to other major astrophysical drivers of dense gas formation remains to be investigated further, and will be an important target for future work.
We investigate the influence of large-scale stellar feedback on the formation of molecular clouds in the Large Magellanic Cloud (LMC). Examining the relationship between HI and 12CO(J=1-0) in supergiant shells (SGSs), we find that the molecular fract ion in the total volume occupied by SGSs is not enhanced with respect to the rest of the LMC disk. However, the majority of objects (~70% by mass) are more molecular than their local surroundings, implying that the presence of a supergiant shell does on average have a positive effect on the molecular gas fraction. Averaged over the full SGS sample, our results suggest that ~12-25% of the molecular mass in supergiant shell systems was formed as a direct result of the stellar feedback that created the shells. This corresponds to ~4-11% of the total molecular mass of the galaxy. These figures are an approximate lower limit to the total contribution of stellar feedback to molecular cloud formation in the LMC, and constitute one of the first quantitative measurements of feedback-triggered molecular cloud formation in a galactic system.
The role of large-scale stellar feedback in the formation of molecular clouds has been investigated observationally by examining the relationship between HI and 12CO(J=1-0) in supershells. Detailed parsec-resolution case studies of two Milky Way supe rshells demonstrate an enhanced level of molecularisation over both objects, and hence provide the first quantitative observational evidence of increased molecular cloud production in volumes of space affected by supershell activity. Recent results on supergiant shells in the LMC suggest that while they do indeed help to organise the ISM into over-dense structures, their global contribution to molecular cloud formation is of the order of only ~10%.
We present an in-depth case study of three molecular clouds associated with the walls of the Galactic supershells GSH 287+04-17 and GSH 277+00+36. These clouds have been identified in previous work as examples in which molecular gas is either being f ormed or destroyed due to the influence of the shells. 12CO(J=1-0), 13CO(J=1-0) and C18O(J=1-0) mapping observations with the Mopra telescope provide detailed information on the distribution and properties of the molecular gas, enabling an improved discussion of its relationship to the wider environment in which it resides. We find that massive star formation is occurring in molecular gas likely formed in-situ in the shell wall, at a Galactic altitude of ~200 pc. This second-generation star formation activity is dominating its local environment; driving the expansion of a small HII region which is blistering out of the atomic shell wall. We also find new morphological evidence of disruption in two smaller entrained molecular clouds thought to pre-date the shells. We suggest that at the present post-interaction epoch, the lifetime of this surviving molecular material is no longer strongly determined by the shells themselves.
We present parsec-scale resolution observations of the atomic and molecular ISM in two Galactic supershells, GSH 287+04-17 and GSH 277+00+36. HI synthesis images from the Australia Telescope Compact Array are combined with 12CO(J=1-0) data from the N ANTEN telescope to reveal substantial quantities of molecular gas closely associated with both shells. These data allow us to confirm an enhanced level of molecularization over the volumes of both objects, providing the first direct observational evidence of increased molecular cloud production due to the influence of supershells. We find that the atomic shell walls are dominated by cold gas with estimated temperatures and densities of T ~ 100 K and n0 ~ 10 cm-3. Locally, the shells show rich substructure in both tracers, with molecular gas seen elongated along the inner edges of the atomic walls, embedded within HI filaments and clouds, or taking the form of small CO clouds at the tips of tapering atomic `fingers. We discuss these structures in the context of different formation scenarios, suggesting that molecular gas embedded within shell walls is well explained by in-situ formation from the swept up medium, whereas CO seen at the ends of fingers of HI may trace remnants of molecular clouds that pre-date the shells. A preliminary assessment of star formation activity within the shells confirms ongoing star formation in the molecular gas of both GSH 287+04-17 and GSH 277+00+36.
We present new parsec-scale resolution data from a multi-phase study of the ISM in the walls of Galactic supershells. HI synthesis images and CO survey data reveal a wealth of substructure, including dense-tipped fingers and extended molecular clouds embedded in shell walls. We briefly consider formation scenarios for these features, and suggest that both the interaction of an expanding shell with pre-existing dense clouds, as well as in-situ formation of CNM and molecular gas, are likely to be relevant. Future work will also examine the role of instabilities in structure formation and breakup, and will investigate the presence of high-altitude gas associated with supershells and chimneys.
We present a catalogue of 12CO(J=1-0) and 13CO(J=1-0) molecular clouds in the spatio-velocity range of the Carina Flare supershell, GSH 287+04-17. The data cover a region of ~66 square degrees and were taken with the NANTEN 4m telescope, at spatial a nd velocity resolutions of 2.6 and 0.1 km/s. Decomposition of the emission results in the identification of 156 12CO clouds and 60 13CO clouds, for which we provide observational and physical parameters. Previous work suggests the majority of the detected mass forms part of a comoving molecular cloud complex that is physically associated with the expanding shell. The cloud internal velocity dispersions, degree of virialization and size-linewidth relations are found to be consistent with those of other Galactic samples. However, the vertical distribution is heavily skewed towards high-altitudes. The robust association of high-z molecular clouds with a known supershell provides some observational backing for the theory that expanding shells contribute to the support of a high-altitude molecular layer.
The Carina Flare supershell, GSH 287+04-17, is a molecular supershell originally discovered in 12CO(J=1-0) with the NANTEN 4m telescope. We present the first study of the shells atomic ISM, using HI 21 cm line data from the Parkes 64m telescope South ern Galactic Plane Survey. The data reveal a gently expanding, ~ 230 x 360 pc HI supershell that shows strong evidence of Galactic Plane blowout, with a break in its main body at z ~ 280 pc and a capped high-latitude extension reaching z ~ 450 pc. The molecular clouds form co-moving parts of the atomic shell, and the morphology of the two phases reflects the supershells influence on the structure of the ISM. We also report the first discovery of an ionised component of the supershell, in the form of delicate, streamer-like filaments aligned with the proposed direction of blowout. The distance estimate to the shell is re-examined, and we find strong evidence to support the original suggestion that it is located in the Carina Arm at a distance of 2.6 +- 0.4 kpc. Associated HI and H2 masses are estimated as M(HI) ~ 7 +- 3 x 10^5 Msol and M(H2) ~ 2.0 +- 0.6 x 10^5 Msol, and the kinetic energy of the expanding shell as E ~ 1 x 10^51 erg. We examine the results of analytical and numerical models to estimate a required formation energy of several 10^51 to ~ 10^52 erg, and an age of ~ 10^7 yr. This age is compatible with molecular cloud formation time-scales, and we briefly consider the viability of a supershell-triggered origin for the molecular component.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا