ترغب بنشر مسار تعليمي؟ اضغط هنا

Molecular Clouds in Supershells: A Case Study of Three Objects in the Walls of GSH 287+04-17 and GSH 277+00+36

42   0   0.0 ( 0 )
 نشر من قبل Joanne Dawson
 تاريخ النشر 2011
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present an in-depth case study of three molecular clouds associated with the walls of the Galactic supershells GSH 287+04-17 and GSH 277+00+36. These clouds have been identified in previous work as examples in which molecular gas is either being formed or destroyed due to the influence of the shells. 12CO(J=1-0), 13CO(J=1-0) and C18O(J=1-0) mapping observations with the Mopra telescope provide detailed information on the distribution and properties of the molecular gas, enabling an improved discussion of its relationship to the wider environment in which it resides. We find that massive star formation is occurring in molecular gas likely formed in-situ in the shell wall, at a Galactic altitude of ~200 pc. This second-generation star formation activity is dominating its local environment; driving the expansion of a small HII region which is blistering out of the atomic shell wall. We also find new morphological evidence of disruption in two smaller entrained molecular clouds thought to pre-date the shells. We suggest that at the present post-interaction epoch, the lifetime of this surviving molecular material is no longer strongly determined by the shells themselves.

قيم البحث

اقرأ أيضاً

We present parsec-scale resolution observations of the atomic and molecular ISM in two Galactic supershells, GSH 287+04-17 and GSH 277+00+36. HI synthesis images from the Australia Telescope Compact Array are combined with 12CO(J=1-0) data from the N ANTEN telescope to reveal substantial quantities of molecular gas closely associated with both shells. These data allow us to confirm an enhanced level of molecularization over the volumes of both objects, providing the first direct observational evidence of increased molecular cloud production due to the influence of supershells. We find that the atomic shell walls are dominated by cold gas with estimated temperatures and densities of T ~ 100 K and n0 ~ 10 cm-3. Locally, the shells show rich substructure in both tracers, with molecular gas seen elongated along the inner edges of the atomic walls, embedded within HI filaments and clouds, or taking the form of small CO clouds at the tips of tapering atomic `fingers. We discuss these structures in the context of different formation scenarios, suggesting that molecular gas embedded within shell walls is well explained by in-situ formation from the swept up medium, whereas CO seen at the ends of fingers of HI may trace remnants of molecular clouds that pre-date the shells. A preliminary assessment of star formation activity within the shells confirms ongoing star formation in the molecular gas of both GSH 287+04-17 and GSH 277+00+36.
75 - N. Schneider 2013
A key parameter to the description of all star formation processes is the density structure of the gas. In this letter, we make use of probability distribution functions (PDFs) of Herschel column density maps of Orion B, Aquila, and Polaris, obtained with the Herschel Gould Belt survey (HGBS). We aim to understand which physical processes influence the PDF shape, and with which signatures. The PDFs of Orion B (Aquila) show a lognormal distribution for low column densities until Av 3 (6), and a power-law tail for high column densities, consistent with a rho r^-2 profile for the equivalent spherical density distribution. The PDF of Orion B is broadened by external compression due to the nearby OB stellar aggregates. The PDF of a quiescent subregion of the non-star-forming Polaris cloud is nearly lognormal, indicating that supersonic turbulence governs the density distribution. But we also observe a deviation from the lognormal shape at Av>1 for a subregion in Polaris that includes a prominent filament. We conclude that (i) the point where the PDF deviates from the lognormal form does not trace a universal Av-threshold for star formation, (ii) statistical density fluctuations, intermittency and magnetic fields can cause excess from the lognormal PDF at an early cloud formation stage, (iii) core formation and/or global collapse of filaments and a non-isothermal gas distribution lead to a power-law tail, and (iv) external compression broadens the column density PDF, consistent with numerical simulations.
We present a study of the three-dimensional structure of the molecular clouds in the Galactic Centre (GC) using CO emission and OH absorption lines. Two CO isotopologue lines, $^{12}$CO ($J$=1$rightarrow$0) and $^{13}$CO ($J$=1$rightarrow$0), and fou r OH ground-state transitions, surveyed by the Southern Parkes Large-Area Survey in Hydroxyl (SPLASH), contribute to this study. We develop a novel method to calculate the OH column density, excitation temperature, and optical depth precisely using all four OH lines, and we employ it to derive a three-dimensional model for the distribution of molecular clouds in the GC for six slices in Galactic latitude. The angular resolution of the data is 15.5 arcmin, which at the distance of the GC (8.34 kpc) is equivalent to 38 pc. We find that the total mass of OH in the GC is in the range 2400-5100 Solar mass . The face-on view at a Galactic latitude of b = 0{deg} displays a bar-like structure with an inclination angle of 67.5 $pm$ 2.1{deg} with respect to the line of sight. No ring-like structure in the GC is evident in our data, likely due to the low spatial resolution of the CO and OH maps.
Density profiles of isolated cores derived from thermal dust continuum emission rely on models of dust properties, such as mass opacity, which are poorly constrained. With complementary measures from near-infrared extinction maps, we can assess the r eliability of commonly-used dust models. In this work, we compare Herschel-derived maps of the optical depth with equivalent maps derived from CFHT WIRCAM near-infrared observations for three isolated cores: CB68, L429, and L1552. We assess the dust opacities provided from four models: OH1a, OH5a, Orm1, and Orm4. Although the consistency of the models differs between the three sources, the results suggest that the optical properties of dust in the envelopes of the cores are best described by either silicate and bare graphite grains (e.g., Orm1) or carbonaceous grains with some coagulation and either thin or no ice mantles (e.g., OH5a). None of the models, however, individually produced the most consistent optical depth maps for every source. The results suggest that either the dust in the cores is not well described by any one dust property model, the application of the dust models cannot be extended beyond the very center of the cores, or more complex SED fitting functions are necessary.
Noble gas molecules have not hitherto been detected in space. From spectra obtained with the Herschel Space Observatory, we report the detection of emission in the 617.5 GHz and 1234.6 GHz J = 1-0 and 2-1 rotational lines of {36}ArH^+ at several posi tions in the Crab Nebula, a supernova remnant known to contain both H2 molecules and regions of enhanced ionized argon emission. {36}Ar is believed to have originated from explosive nucleosynthesis in massive stars during core-collapse supernova events. Its detection in the Crab Nebula, the product of such a supernova event, confirms this expectation. The likely excitation mechanism for the observed {36}ArH^+ emission lines is electron collisions in partially ionized regions with electron densities of a few hundred per centimeter cubed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا