ترغب بنشر مسار تعليمي؟ اضغط هنا

A Young GMC Formed at the Interface of Two Colliding Supershells: Observations Meet Simulations

54   0   0.0 ( 0 )
 نشر من قبل Joanne Dawson
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Dense, star-forming gas is believed to form at the stagnation points of large-scale ISM flows, but observational examples of this process in action are rare. We here present a giant molecular cloud (GMC) sandwiched between two colliding Milky Way supershells, which we argue shows strong evidence of having formed from material accumulated at the collision zone. Combining 12CO, 13CO and C18O(J=1-0) data with new high-resolution, 3D hydrodynamical simulations of colliding supershells, we discuss the origin and nature of the GMC (G288.5+1.5), favoring a scenario in which the cloud was partially seeded by pre-existing denser material, but assembled into its current form by the action of the shells. This assembly includes the production of some new molecular gas. The GMC is well interpreted as non-self-gravitating, despite its high mass (MH2 ~ 1.7 x 10^5 Msol), and is likely pressure confined by the colliding flows, implying that self-gravity was not a necessary ingredient for its formation. Much of the molecular gas is relatively diffuse, and the cloud as a whole shows little evidence of star formation activity, supporting a scenario in which it is young and recently formed. Drip-like formations along its lower edge may be explained by fluid dynamical instabilities in the cooled gas.


قيم البحث

اقرأ أيضاً

We investigate the Hi envelope of the young, massive GMCs in the star-forming regions N48 and N49, which are located within the high column density Hi ridge between two kpc-scale supergiant shells, LMC 4 and LMC 5. New long-baseline Hi 21 cm line obs ervations with the Australia Telescope Compact Array (ATCA) were combined with archival shorter baseline data and single dish data from the Parkes telescope, for a final synthesized beam size of 24.75 by 20.48, which corresponds to a spatial resolution of ~ 6 pc in the LMC. It is newly revealed that the Hi gas is highly filamentary, and that the molecular clumps are distributed along filamentary Hi features. In total 39 filamentary features are identified and their typical width is ~ 21 (8-49) [pc]. We propose a scenario in which the GMCs were formed via gravitational instabilities in atomic gas which was initially accumulated by the two shells and then further compressed by their collision. This suggests that GMC formation involves the filamentary nature of the atomic medium.
We present the first measurement of the lifetimes of Giant Molecular Clouds (GMCs) in cosmological simulations at $z = 0$, using the Latte suite of FIRE-2 simulations of Milky Way-mass galaxies. We track GMCs with total gas mass $gtrsim 10^5$ M$_odot $ at high spatial ($sim1$ pc), mass ($7100$ M$_{odot}$), and temporal (1 Myr) resolution. Our simulated GMCs are consistent with the distribution of masses for massive GMCs in the Milky Way and nearby galaxies. We find GMC lifetimes of $5-7$ Myr, or 1-2 freefall times, on average, with less than 2$%$ of clouds living longer than 20 Myr. We find decreasing GMC lifetimes with increasing virial parameter, and weakly increasing GMC lifetimes with galactocentric radius, implying that environment affects the evolutionary cycle of GMCs. However, our GMC lifetimes show no systematic dependence on GMC mass or amount of star formation. These results are broadly consistent with inferences from the literature and provide an initial investigation into ultimately understanding the physical processes that govern GMC lifetimes in a cosmological setting.
An overview of a spectroscopic survey for massive stars in the direction of the Galactic giant molecular complex G23.3-0.3 is presented (Messineo et al. 2010, and 2014 A&A submitted). This region is interesting because it is rich in HII regions and s upernova remnants (SNRs). A number of 38 early-type stars, a new luminous blue variable, and a dozen of red supergiants were detected. We identified the likely progenitors of the SNRs W41, G22.7-00.2, and G22.7583-0.4917.
In this work we have carried out an in-depth analysis of the young stellar content in the W3 GMC. The YSO population was identified and classified in the IRAC/MIPS color-magnitude space according to the `Class scheme and compared to other classificat ions based on intrinsic properties. Class 0/I and II candidates were also compared to low/intermediate-mass pre-main-sequence stars selected through their colors and magnitudes in 2MASS. We find that a reliable color/magnitude selection of low-mass PMS stars in the infrared requires prior knowledge of the protostar population, while intermediate mass objects can be more reliably identified. By means of the MST algorithm and our YSO spatial distribution and age maps we investigated the YSO groups and the star formation history in W3. We find signatures of clustered and distributed star formation in both triggered and quiescent environments. The central/western parts of the GMC are dominated by large scale turbulence likely powered by isolated bursts of star formation that triggered secondary star formation events. Star formation in the eastern high density layer also shows signs of extended periods of star formation. While our findings support triggering as a key factor for inducing and enhancing some of the major star forming activity in the HDL (e.g., W3 Main/W3(OH)), we argue that some degree of quiescent or spontaneous star formation is required to explain the observed YSO population. Our results also support previous studies claiming an spontaneous origin for the isolated massive star(s) powering KR 140.
Radio observations suggest that 3C 75, located in the dumbbell shaped galaxy NGC 1128 at the center of Abell 400, hosts two colliding jets. Motivated by this source, we perform three-dimensional hydrodynamical simulations using a modified version of the GPU-accelerated Adaptive-MEsh-Refinement hydrodynamical parallel code ($mathit{GAMER}$) to study colliding extragalactic jets. We find that colliding jets can be cast into two categories: 1) bouncing jets, in which case the jets bounce off each other keeping their identities, and 2) merging jets, when only one jet emerges from the collision. Under some conditions the interaction causes the jets to break up into oscillating filaments of opposite helicity, with consequences for their downstream stability. When one jet is significantly faster than the other and the impact parameter is small, the jets merge; the faster jet takes over the slower one. In the case of merging jets, the oscillations of the filaments, in projection, may show a feature which resembles a double helix, similar to the radio image of 3C 75. Thus we interpret the morphology of 3C 75 as a consequence of the collision of two jets with distinctly different speeds at a small impact parameter, with the faster jet breaking up into two oscillating filaments.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا