ترغب بنشر مسار تعليمي؟ اضغط هنا

Thermoelectric figures of merit, ZT > 0.5, have been obtained in arc-melted TiNiSn-based ingots. This promising conversion efficiency is due to a low lattice thermal conductivity, which is attributed to excess nickel in the half-Heusler structure.
The phase stability of the (Bi2)m(Bi2Te3)n natural superlattices has been investigated through the low temperature solid state synthesis of a number of new binary BixTe1-x compositions. Powder X-ray diffraction revealed that an infinitely adaptive se ries forms for 0.44 < x < 0.70, while an unusual 2-phase region with continuously changing compositions is observed for 0.41 < x < 0.43. For x > 0.70, mixtures of elemental Bi and an almost constant composition (Bi2)m(Bi2Te3)n phase are observed. Rietveld analysis of synchrotron X-ray powder diffraction data collected on Bi2Te (m = 2, n = 1) revealed substantial interchange of Bi and Te between the Bi2 and Bi2Te3 blocks, demonstrating that the block compositions are variable. All investigated phase pure compositions are degenerate semiconductors with low residual resistivity ratios and moderate positive magnetoresistances (R/R0 = 1.05 in 9 T). The maximum Seebeck coefficient is +80 muV K-1 for x = 0.63, leading to an estimated thermoelectric figure of merit, zT = 0.2 at 250 K.
The phase diagram of NdFe1-xCoxAsO for low cobalt substitution consists of a superconducting dome (0.05 < x < 0.20) with a maximum critical temperature of 16.5(2) K for x = 0.12. The x = 1 end member, NdCoAsO, is an itinerant ferromagnet (TC = 85 K) with an ordered moment of 0.30(1) BM at 15 K. Below TN = 9 K, Nd spin-ordering results in the antiferromagnetic coupling of the existing ferromagnetic planes. Rietveld analysis reveals that the electronically important two-fold tetrahedral angle increases from 111.4 to 115.9 deg. in this series. Underdoped samples with x = 0.046(2) and x = 0.065(2) show distortions to the orthorhombic Cmma structure at 72(2) and 64(2) K, respectively. The temperature dependences of the critical fields Hc2(T) near Tc are linear with almost identical slopes of 2.3(1) T K-1 for x = 0.065(2), x = 0.118(2) and x = 0.172(2). The estimated critical field Hc2(0) and correlation length for optimally doped samples are 26(1) T and 36(1) Angstrom. A comparison of the maximum reported critical temperatures of well-characterized cobalt doped 122- and 1111-type superconductors is presented.
We have investigated the magnetoelectric coupling in the lone pair containing piezoelectric ferrimagnet Cu2OSeO3. Significant magnetocapacitance develops in the magnetically ordered state (TC = 60 K). We find critical behavior near TC and a divergenc e near the metamagnetic transition at 500 Oe. High-resolution X-ray and neutron powder diffraction measurements show that Cu2OSeO3 is metrically cubic down to 10 K but that the ferrimagnetic ordering reduces the symmetry to rhombohedral R3. The metric cubic lattice dimensions exclude a magnetoelectric coupling mechanism involving spontaneous lattice strain, and this is unique among magnetoelectric and multiferroic materials.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا