ترغب بنشر مسار تعليمي؟ اضغط هنا

Influence of the Nd3+ Moments on the Magnetic Behaviour of the Oxypnictides superconductors NdFeAsO1-xFx

168   0   0.0 ( 0 )
 نشر من قبل Jan-Willem Bos
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

This paper has been withdrawn by the authors as the available data were not sufficient to support the conclusions



قيم البحث

اقرأ أيضاً

269 - U. Welp , R. Xie , A. E. Koshelev 2008
We present heat capacity measurements of the upper critical fields of single-crystal NdFeAsO1-xFx. In zero-magnetic field a clear step in the heat capacity is observed at Tc = 47K . In fields applied perpendicular to the FeAs-layers the step broadens significantly whereas for the in-plane orientation the field effects are small. This behavior is reminiscent of the CuO2-high-Tc superconductors and is a manifestation of pronounced fluctuation effects. Using an entropy conserving construction we determine the transition temperatures in applied fields and the upper critical field slopes of dHc2,a = -0.72 T/K and dHc2,ab = -3.1 T/K. Zero-temperature coherence lengths of xiab = 3.7 nm and xic = 0.9 nm and a modest superconducting anisotropy of gamma ~ 4 can be deduced in a single-band model.
The lattice properties at low temperatures of two samples of NdFeAsO1-xFx (x=0.05 and 0.25) have been examined in order to investigate possible structural phase transition that may occur in the optimally doped superconducting sample with respect to t he non-superconducting low-F concentration compound. In order to detect small modifications in the ion displacements with temperature micro-Raman and high resolution synchrotron powder diffraction measurements were carried out. No increase of the width of the (220) or (322) tetragonal diffraction peaks and microstrains could be found in the superconducting sample from synchrotron XRD measurements. On the other hand, the atomic displacement parameters deviate from the expected behavior, in agreement with modifications in the phonon width, as obtained by Raman scattering. These deviations occur around 150 K for both F dopings, with distinct differences among the two compounds, i.e., they decrease at low doping and increase for the superconducting sample. The data do not support a hidden phase transition to an orthorhombic phase in the superconducting compound, but point to an isostructural lattice deformation. Based on the absence of magnetic effects in this temperature range for the superconducting sample, we attribute the observed lattice anomalies to the formation of local lattice distortions that, being screened by the carriers, can only acquire long-range coherence by means of a structural phase transition at low doping levels.
We use angle resolved photoemission spectroscopy (ARPES) to study the momentum dependence of the superconducting gap in NdFeAsO1-xFx single crystals. We find that the Gamma hole pocket is fully gapped below the superconducting transition temperature. The value of the superconducting gap is 15 +- 1.5 meV and its anisotropy around the hole pocket is smaller than 20% of this value. This is consistent with an isotropic or anisotropic s-wave symmetry of the order parameter or exotic d-wave symmetry with nodes located off the Fermi surface sheets. This is a significant departure from the situation in the cuprates, pointing to possibility that the superconductivity in the iron arsenic based system arises from a different mechanism.
We report resistivity $rho$ and Hall effect measurements on EuFe$_2$As$_2$ at ambient pressure and 28 kbar and magnetization measurements at ambient pressure. We analyze the temperature and magnetic-field dependence of $rho$ and the Hall effect using a molecular-field theory for magnetoresistance and an empirical formula for the anomalous Hall effect and find that electron scattering due to the Eu$^{2+}$ local moments plays only a minor role in determining electronic transport properties of EuFe$_2$As$_2$.
102 - L. Zhang , T. Fujita , F. Chen 2008
Raman spectra of polycrystalline NdFeAsO1-xFx (x=0.0, 0.1, 0.2) compound have been systematically investigated as functions of temperature and fluorine concentration. Scanning electron microscopic and Raman microscopic characterization demonstrates t hat the polycrystalline samples mainly contain two phases, i.e. superconductor NdFeAsO1-xFx compound and a MnP-type FeAs phase, with dissimilar characteristic Raman bands. It was found that fluorine doping leads to structure disorder in the insulator Nd-O layers and high temperature coefficient of Fe-As vibrational mode.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا