ترغب بنشر مسار تعليمي؟ اضغط هنا

Phase Stability, Structures and Properties of the (Bi2)m(Bi2Te3)n Natural Superlattices

36   0   0.0 ( 0 )
 نشر من قبل Jan-Willem Bos
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The phase stability of the (Bi2)m(Bi2Te3)n natural superlattices has been investigated through the low temperature solid state synthesis of a number of new binary BixTe1-x compositions. Powder X-ray diffraction revealed that an infinitely adaptive series forms for 0.44 < x < 0.70, while an unusual 2-phase region with continuously changing compositions is observed for 0.41 < x < 0.43. For x > 0.70, mixtures of elemental Bi and an almost constant composition (Bi2)m(Bi2Te3)n phase are observed. Rietveld analysis of synchrotron X-ray powder diffraction data collected on Bi2Te (m = 2, n = 1) revealed substantial interchange of Bi and Te between the Bi2 and Bi2Te3 blocks, demonstrating that the block compositions are variable. All investigated phase pure compositions are degenerate semiconductors with low residual resistivity ratios and moderate positive magnetoresistances (R/R0 = 1.05 in 9 T). The maximum Seebeck coefficient is +80 muV K-1 for x = 0.63, leading to an estimated thermoelectric figure of merit, zT = 0.2 at 250 K.

قيم البحث

اقرأ أيضاً

88 - M.Z. Shi , B. Lei , C. S. Zhu 2019
The observation of quantized anomalous Hall conductance in the forced ferromagnetic state of MnBi2Te4 thin flakes has attracted much attentions. However, strong magnetic field is needed to fully polarize the magnetic moments due to the large antiferr omagnetic interlayer exchange coupling. Here, we reported the magnetic and electrical transport properties of the magnetic van der Waals MnBi2Te4(Bi2Te3)n (n=1,2) single crystals, in which the interlayer antiferromagnetic exchange coupling is greatly suppressed with the increase of the separation layers Bi2Te3. MnBi4Te7 and MnBi6Te10 show weak antiferromagnetic transition at 12.3 and 10.5 K, respectively. The ferromagnetic hysteresis was observed at low temperature for both of the crystals, which is quite crucial for realizing the quantum anomalous Hall effect without external magnetic field. Our work indicates that MnBi2Te4(Bi2Te3)n (n=1,2) provide ideal platforms to investigate the rich topological phases with going to their 2D limits.
Magnetic interaction with the gapless surface states in topological insulator (TI) has been predicted to give rise to a few exotic quantum phenomena. However, the effective magnetic doping of TI is still challenging in experiment. Using first-princip les calculations, the magnetic doping properties (V, Cr, Mn and Fe) in three strong TIs (Bi$_{2}$Se$_{3}$, Bi$_{2}$Te$_{3}$ and Sb$_{2}$Te$_{3}$) are investigated. We find that for all three TIs the cation-site substitutional doping is most energetically favorable with anion-rich environment as the optimal growth condition. Further our results show that under the nominal doping concentration of 4%, Cr and Fe doped Bi$_{2}$Se$_{3}$, Bi$_{2}$Te$_{3}$, and Cr doped Sb$_{2}$Te$_{3}$ remain as insulator, while all TIs doped with V, Mn and Fe doped Sb$_{2}$Te$_{3}$ become metal. We also show that the magnetic interaction of Cr doped Bi$_{2}$Se$_{3}$ tends to be ferromagnetic, while Fe doped Bi$_{2}$Se$_{3}$ is likely to be antiferromagnetic. Finally, we estimate the magnetic coupling and the Curie temperature for the promising ferromagnetic insulator (Cr doped Bi$_{2}$Se$_{3}$) by Monte Carlo simulation. These findings may provide important guidance for the magnetism incorporation in TIs experimentally.
A series of epitaxial (LaVO3)6m(SrVO3)m superlattices having the same nominal composition as La6/7Sr1/7VO3, a Mott-Hubbard insulator, were grown with pulsed-laser deposition on [001]-oriented SrTiO3 substrates, and their superlattice period was varie d. When m=1, the insulating resistivity of bulk-like La6/7Sr1/7VO3 is obtained; however, an increase in the periodicity (m>=2) results in metallic samples. Comparison of the superlattice periodicity with the coherence length of charge carriers in perovskite oxide heterostructures are used to understand these observations. A filling-controlled insulator-metal transition was induced by placing a single dopant layer of SrVO3 within LaVO3 layers of varying thickness.
Li-based half-Heusler alloys have attracted much attention due to their potential applications in optoelectronics and because they carry the possibility of exhibiting large magnetic moments for spintronic applications. Due to their similarities to me tastable zinc blende half-metals, the half-Heusler alloys $beta$-LiMnZ (Z = N, P and Si) were systematically examined for their electric, magnetic and stability properties at optimized lattice constants and strained lattice constants that exhibit half-metallic properties. Other phases of the half-Heusler structure ($alpha$ and $gamma$) are also reported here, but they are unlikely to be grown. The magnetic moments of these stable Li-based alloys are expected to reach as high as 4 $mu_{mathrm{B}}$ per unit cell when Z = Si and 5 $mu_{mathrm{B}}$ per unit cell when Z = N and P, however the antiferromagnetic spin configuration is energetically favored when Z is a pnictogen. $beta$-LiMnSi at a lattice constant 14% larger than its equilibrium lattice constant is a promising half-metal for spintronic applications due to its large magnetic moment and vibrational stability. The modified Slater--Pauling rule for these alloys is determined. Finally, a plausible method for developing half-metallic Li$_x$MnZ at equilibrium, by tuning $x$, is investigated, but, unlike tetragonalization, this type of alloying introduces local structural changes that destroy the half-metallicity.
We address one of the main challenges to TiO2-photocatalysis, namely band gap narrowing, by combining nanostructural changes with doping. With this aim we compare TiO2s electronic properties for small 0D clusters, 1D nanorods and nanotubes, 2D layers , and 3D surface and bulk phases using different approximations within density functional theory and GW calculations. In particular, we propose very small (R < 0.5 nm) but surprisingly stable nanotubes with promising properties. The nanotubes are initially formed from TiO2 layers with the PtO2 structure, with the smallest (2,2) nanotube relaxing to a rutile nanorod structure. We find that quantum confinement effects - as expected - generally lead to a widening of the energy gap. However, substitutional doping with boron or nitrogen is found to give rise to (meta-)stable structures and the introduction of dopant and mid-gap states which effectively reduce the band gap. Boron is seen to always give rise to n-type doping while depending on the local bonding geometry, nitrogen may give rise to n-type or p-type doping. For under coordinated TiO2 surface structures found in clusters, nanorods, nanotubes, layers and surfaces nitrogen gives rise to acceptor states while for larger clusters and bulk structures donor states are introduced.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا