ترغب بنشر مسار تعليمي؟ اضغط هنا

117 - Jan Harms , Ho Jung Paik 2015
Terrestrial gravity noise, also known as Newtonian noise, produced by ambient seismic and infrasound fields will pose one of the main sensitivity limitations in low-frequency, ground-based, gravitational-wave (GW) detectors. It was estimated that thi s noise foreground needs to be suppressed by about 3 -- 5 orders of magnitude in the frequency band 10,mHz to 1,Hz, which will be extremely challenging. In this article, we present a new approach that greatly facilitates cancellation of gravity noise in full-tensor GW detectors. The method uses optimal combinations of tensor channels and environmental sensors such as seismometers and microphones to reduce gravity noise. It makes explicit use of the direction of propagation of a GW, and can therefore either be implemented in directional searches for GWs or in observations of known sources. We show that suppression of the Newtonian-noise foreground is greatly facilitated using the extra strain channels in full-tensor GW detectors. Only a modest number of auxiliary, high-sensitivity environmental sensors are required to achieve noise suppression by a few orders of magnitude.
158 - Jan Harms , Stefan Hild 2014
In this article we propose a new method for reducing Newtonian noise in laser-interferometric gravitational-wave detectors located on the Earths surface. We show that by excavating meter-scale recesses in the ground around the main test masses of a g ravitational wave detector it is possible to reduce the coupling of Rayleigh wave driven seismic disturbances to test mass displacement. A discussion of the optimal recess shape is given and we use finite element simulations to derive the scaling of the Newtonian noise suppression with the parameters of the recess as well as the frequency of the seismic excitation. Considering an interferometer similar to an Advance LIGO configuration, our simulations indicate a frequency dependent Newtonian noise suppression factor of 2 to 4 in the relevant frequency range for a recesses of 4m depth and a width and length of 11m and 5m, respectively. Though a retrofit to existing interferometers seems not impossible, the application of our concept to future infrastructures seems to provide a better benefit/cost ratio and therefore a higher feasibility.
The search for gravitational waves is one of todays major scientific endeavors. A gravitational wave can interact with matter by exciting vibrations of elastic bodies. Earth itself is a large elastic body whose so-called normal-mode oscillations ring up when a gravitational wave passes. Therefore, precise measurement of vibration amplitudes can be used to search for the elusive gravitational-wave signals. Earths free oscillations that can be observed after high-magnitude earthquakes have been studied extensively with gravimeters and low-frequency seismometers over many decades leading to invaluable insight into Earths structure. Making use of our detailed understanding of Earths normal modes, numerical models are employed for the first time to accurately calculate Earths gravitational-wave response, and thereby turn a network of sensors that so far has served to improve our understanding of Earth, into an astrophysical observatory exploring our Universe. In this article, we constrain the energy density of gravitational waves to values in the range 0.035 - 0.15 normalized by the critical energy density of the Universe at frequencies between 0.3mHz and 5mHz, using 10 years of data from the gravimeter network of the Global Geodynamics Project that continuously monitors Earths oscillations. This work is the first step towards a systematic investigation of the sensitivity of gravimeter networks to gravitational waves. Further advance in gravimeter technology could improve sensitivity of these networks and possibly lead to gravitational-wave detection.
Direct detection of gravitational radiation in the audio band is being pursued with a network of kilometer-scale interferometers (LIGO, Virgo, KAGRA). Several space missions (LISA, DECIGO, BBO) have been proposed to search for sub-Hz radiation from m assive astrophysical sources. Here we examine the potential sensitivity of three ground-based detector concepts aimed at radiation in the 0.1 -- 10,Hz band. We describe the plethora of potential astrophysical sources in this band and make estimates for their event rates and thereby, the sensitivity requirements for these detectors. The scientific payoff from measuring astrophysical gravitational waves in this frequency band is great. Although we find no fundamental limits to the detector sensitivity in this band, the remaining technical limits will be extremely challenging to overcome.
Fluctuations in the local Newtonian gravitational field present a limit to high precision measurements, including searches for gravitational waves using laser interferometers. In this work, we present a model of this perturbing gravitational field an d evaluate schemes to mitigate the effect by estimating and subtracting it from the interferometer data stream. Information about the Newtonian noise is obtained from simulated seismic data. The method is tested on causal as well as acausal implementations of noise subtraction. In both cases it is demonstrated that broadband mitigation factors close to 10 can be achieved removing Newtonian noise as a dominant noise contribution. The resulting improvement in the detector sensitivity will substantially enhance the detection rate of gravitational radiation from cosmological sources.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا